24x(Scheduler” 7.5
Multi-platform Edition

JavaScript Reference

Copyright © SoftTree Technologies, Inc. 2004-2025
All rights reserved

Table of Contents

Table of Contents

ABOUT THIS REFERENCE ..ottt ettt sttt e e et e e s st e e e nib e e e et e e e snbe e e e nanees 7
CONVENTIONS USED IN THIS DOCUMENTcttttttttiiiiiiiiittteeeeeeeeeeeeeeeeeeeeeessasseseeseeseeeseesesesssssssssssssssssssssssnnnsnnnnnns 7
ABBREVIATIONS AND TERMS ...ttt ttuttttetttteeeauttteesatteeesatbeeesastseeesste e e s asbe e e e antb e e e anbe e e e aabe e e e anbbeeeaanbneeennbeeeesbbeeean 7
TRADEMARKS ...t uttteeiattteeaatttte e sttt e e ettt e e e sttt e e sab e e a4k b e e e amEe e e 422 s e e e o4k bt e e e s be e e e aabe e e o4 ek bt e e e an b bt e e nabb e e e e nnbeeeeantbeeenan 7

OPERATORS ... eitttitttieteeeeeeestae e e e e et e ettt e e e e e e e e e st taeeeee e e s aa s eeeeeee s s aaa s eeeeeeeseaaaseeeeesessaanaeeesessstnnaeeeeeesssnnnsnns 12
Operator Precedence12
JAVASCRIPT OBJIECTS ..ititttuieteeettittitiiaeeeseessttataeeeseestttaaaeeetesstaaaaeeeessstaaraeeresattanaaeeeerssatanaaeeeeressnnanraeaeees

=T g (o b= 100 I @] o] T=T o £ PP RPUPRPRT
Array Object.........
String Object........
Boolean Object
Number Object
Math Object..........
(D=1 (=3 @ o] =X PR SOSPRRPRN
| =] g TS [o T @ o (=Tt SO URPRO
Process Object
RUNANAWAILINTO ODJECL ...ttt e e e s et e e e e e e e et beeeaaaeeeannees
Directory Object
File Object............
FTP ObjecCt.......cccccvvvveeeeiiiiien,
Comparelnfo Object
Mail Object........ccccvvvveeeiiiiiin.
Scheduler Object
Web Object.............

RESERVED WORDS ...ttt

24x7 Scheduler -2-

Table of Contents

copyMerge
copyReplace

HIGH-LEVEL FILE OPERATIONSuuuutieeitttttttieeeeeeseattaeeeeeeessataaaeeeeesesata s eeeseessatasaeeeesesssaasaeesessstnnnaseeeeernnenn 26
connectFile
exists

5] o LA F= T = PP OO UPRPRT
readAll
transfer

setPos

DATABASE OPERATIONSiittieeitieeett e ettt e ee st ee e et ee e st eestaaaaseaa e e st e ssanaasstaaesstnnasssanaarssnassstnaeesnnaarnnnns 36
connect .
QISCONNEBCT . 36
CONNECEFIIE ..o 37
executecooeeveeerrennn. ...38

retrieve........ccoceeeeeeen. ... 38
exportToFile

TP OPERATIONScittttieieeees ettt e e e e e ettt e e e e e ee e et e e e e e e e e e e s bt e eeeee e e s st e aeeeesessaaanaeeeeeeessasanseeeeesessnnnseeeeennnrnn 39

=T o] 01T a0 |1 = PR TR UPRRRT 39
putFile.........ccooeeeeen. ...40
getFile........occeeee. ..40
resumeFile................. ... 41
renameFile................. .42
deleteFile................... .42
fileSize....cooovvveiiiieinnn. .43
fileExists .43
fileDateTime 44
o T USSR 44
(o [T (@A (=T (=TSR 45
dirDelete .

COMMANT ... 46
(o0 1) (o O ROPO PSRRI 46
(o10) 0] 0T 1 (=1 I | PRSP UPRPRRN 49

24x7 Scheduler -3-

Table of Contents

L5 1] | TP EO O UPRRRT 50

SSH OPERATIONS
config...ceeeeniciiiienenn
runCommand

MQ OPERATIONS .ttt ettt ettt ettt ettt e et e aeaeaeaeaaaaaaaeaaaaaaaaaaans
sendMessage .
FECEIVEAIIMESSAGES . . eeeeeee ettt et e ettt e e e e oottt e e e e e e e et b ee e e e e e e e aaanbe e eeeeeeeaannseeeeeaeeeaannsbeneaaaeeeaanne 52

WEB OPERATIONS
callService
getFile........occeeee.
POSIDALA ...
(o LT iD= = VAV 1 I To | I OO P O UPRPRR
postDataWithLogin
HTIMLERNCOUE. ...ttt ettt se et seb e sea e st seneenene s
URLENCOUE ...ttt sttt sttt se e sen e st sene e es
stripHTML
openPage
(53 ([0 o N Lo o I PP UPRPRTN
jsonToString
xmlStringToJson........
xmlFileToJson............
jsonFileToJdson...........
jsonToXmlString
stringToJsonArray
jsonArrayToString
stringArrayToJsonArray
jsonArrayToStringArray

queueJob
QUEUEREMOLEION ...ttt ettt e e e e e ettt et e e e e e e e nntb e e e e e e e e s antbeeeaaaeeeannes
218 o o TSP
deletedob...................
createJob...................
disableJob
enableJob.................
setJobProperty...........
getJobProperty
setJobVariable...........
getJobVariable...........
L0 5L o PO P TP
(0= A8 o] o 1= UU TR UPRPRT
getFolders
L= LT = (o] T PSPPI PPR
LS00] = 1 (o T PSPPSR PPPR
stdOutput........cc.eeeee.
stdinput..........cccueeee.
exitProcess................
performBackup
removeOldBackups

24x7 Scheduler -4 -

Table of Contents

JOB PROPERTIES IN JDL FORMAT

ADDITIONAL JAVA SCRIPT DOCUMENTATION AND EXAMPLES ...

24x7 Scheduler

Table of Contents

24x7 Scheduler

About This Reference

About This Reference

This reference describes JavaScript language and extensions supported in 24x7 Scheduler Multi-platform Edition, an
advanced cross-platform enterprise job scheduling and automation system. Information in this reference applies to
the 24x7 Scheduler version 5.1 running on all supported operation systems. This reference contains information for
experienced users of the 24x7 Scheduler and assumes that you have a working knowledge of JavaScript and also
understand basic concepts of your operation system.

Conventions Used in This Document

This section describes the style conventions used in this document.

Italic
An italic font is used for filenames, URLs, emphasized text, and the first usage of technical terms.

Monospace
A monospaced font is used for code fragments and data elements.

Bold

A bold font is used for important messages, names of options, names of controls and menu items, and keys.
Graphical marks

ﬁ - This mark is used to indicate product specific options and issues and to mark useful tips.

& - This mark is used to indicate important notes.

Abbreviations and Terms

This guide uses common abbreviations for many widely used technical terms including FTP, HTTP, RAS, SQL,
DBMS, SSH and other.

Trademarks

24x7 Automation Suite, 24x7 Scheduler, 24x7 Event Server, DB Audit, DB Audit Expert, SoftTree SQL
Assistant are trademarks of SoftTree Technologies, Inc.

Windows 10, Windows XP are registered trademarks of Microsoft Corporation. UNIX is registered trademark of
the X/Open Consortium. Sun, SunOS, Solaris, SPARC, Java are trademarks or registered trademarks of Sun
Microsystems, Inc. Ultrix, Digital UNIX and DEC are trademarks of Digital Equipment Corporation. HP-UX is a
trademark of Hewlett-Packard Co. IRIX is a trademark of Silicon Graphics, Inc. AlX is a trademark of
International Business Machines, Inc. AT&T is a trademark of American Telephone and Telegraph, Inc.

Microsoft SQL Server is a registered trademark of Microsoft Corporation.
Oracle is a registered trademark of Oracle Corporation.
IBM, DB2, UDB are registered trademarks of International Business Machines Corporation

All other trademarks appearing in this document are trademarks of their respective owners. All rights reserved.

24x7 Scheduler -7 -

JavaScript Syntax

JavaScript Syntax

JavaScript Statements

The statements used to control program flow in JavaScript are similar to statements available in Java and C. A
statement can span several lines if needed, or several statements can be placed on the same line. A semicolon
must be placed between all statements. Since JavaScript is not strict in its formatting, you must provide the line
breaks and indentation to make sure the code is readable and easy to understand later.

break

Description: Terminates the current for or while loop and passes control to the first statement after the loop.

Syntax:

while (condition)

{
statements. ..
if (condition) break;
statements. ..

}

comment

Description: Notes from the script author that are ignored by the interpreter. Single line comments are
preceded by //. Multiple line comments begin with /* and end with */.

continue

Description: Passes control to the condition in a while loop and to the update expression in a for loop.

for

Description: Creates a loop with three optional expressions enclosed in parentheses and separated by
semicolons, followed by a set of statements to be executed during the loop:

Syntax:
for(initialExpression; condition; updateExpression)
{
statements. ..
}

The initial expression is used to initialize the counter variable, which can be a new variable declared with var.
The condition expression is evaluated on each pass through the loop. If the condition is true, the loop
statements are executed. The update expression is used to increment the counter variable.

24x7 Scheduler -8-

JavaScript Syntax

for...in

Description: Iterates a variable for all of properties of an object:

Syntax:
for (variable iIn object)
{
statements...
}

For each property, it executes the statement block.

function

Description: Declares a JavaScript function with a name and parameters. To return a value, the function must
include a return statement. A function definition cannot be nested within another function.

Syntax:
function name ([parameter] [..., parameter])
{
statements...
}
if...else

Description: A conditional statement that executes the first set of statements if the condition is true, and the
statements following else if false. If...else statements can be nested to any level.

Syntax:
if (condition)
{

}

[else

{
H

statements. ..

statements. ..

return

Description: Specifies a value to be returned by a function.

Syntax:

return expression;

try {statements1} [catch (exception){statements2}]

24x7 Scheduler -9-

JavaScript Syntax

try...catch

Description: The try...catch statement is used to test a block of code for errors. The try block contains the code
to be run, while the catch block contains the code to execute if there is an error. The exception argument is a
variable in which to store the error.

Syntax:
try { ... statement block; } catch (er) { ... error handling block; }

Example: The following example attempts to FTP some file and generates an error if FTP fails. This error
message is then displayed on the screen.

var error = ;
try {
var server = "'my server'';
var user = "'test";
var pass = "1111";

FTP.deleteFile(server, user, pass, '/pub/l.txt, /pub/2.txt'");
}

catch(error) {

if(error == "Error 1")
Scheduler.messageBox(error) ;

var

Description: Declares a variable and optionally initializes it to a value. The scope of a variable is the current
function or, when declared outside a function, the current document.

Syntax:

var variableName [=value] [--., variableName [=value]]

while

Description: Repeats a loop while an expression is true.

Syntax:
while (condition)
{
statements...
}

with

Description: Establishes a default object for a set of statements. Any property references without an object are
assumed to use the default object.

24x7 Scheduler -10 -

JavaScript Syntax

Syntax:
with (object)
{
statements. ..
}

This statement is especially useful when applied to the Math object for a set of calculations. For example,
Example:
with (Math)

var Valuel
var Value2

cos(angle);
sin(angle);

}
replaces
{
var Valuel = Math.cos(angle);
var Value2 = Math.sin(angle);
}

24x7 Scheduler -11 -

JavaScript Syntax

Operators
JavaScript supports the following operators:
Math
Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus
++ Increment
- Decrement
- Negation
Bitwise
Operator Meaning
& AND
~ NOT
| OR
A exclusive OR
<< Left shift
>> Right shift
>>> Right shift, fill with
zeros
Logical
Operator Meaning
== Equal
1= No Equal
< Less
<= Less or Equal
> Greater
>= Greater or Equal
&& AND
[l OR
! NOT
? Conditional
, Comma

Operator Precedence

Precedence refers to the order in which compound operations are computed. Operators on the same level have
equal precedence. Calculations are computed from left to right on all binary operations beginning with the
operators at the top of the list and working down.

24x7 Scheduler -12 -

JavaScript Syntax

Call, member

negation/increment

multiply/divide

addition/subtraction

shift

relational

equality

bitwise AND

bitwise XOR

bitwise OR

logical AND

logical OR

conditional

assignment

op=

comma

24x7 Scheduler

-13-

JavaScript Syntax

JavaScript Objects

JavaScript is an object-oriented language, and as such, includes a set of built-in objects to represent the HTML
document, especially form elements. Built-in objects can be accessed by both the client and server.

Standard Objects
24x7 Scheduler Multi-platform Edition supports the following built-in standard JavaScript objects:
Array Object

Description: Contains an array of objects or values.

Array object supports the following properties and functions:

length

A read/write property indicating the current number of elements within the
array. You may set this property to dynamically expand an array's length.

concat(vall, ...)

Concatenates all the argument values to the existing array, and returns
the new array. Values can be another array.

join([separator])

Converts each element within the array to a string, and joins them into
one large string. Pass in an optional separator as argument to be used to
separate each array element. If none is passed, the default comma (') is
used.

pop() Deletes the last element within array and returns the deleted element.
Original array is modified.

Push(..., ...) Adds the argument values to the end of the array, and modifies the
original array with the new additions. Returns the new length of the array.

Reverse() Reverses the order of all elements within the array. Original array is
modified.

shift() Deletes and returns the first element within the array. Original array is

modified to account for the missing element (so 2nd element now
becomes the first etc).

slice(start, [end])

Returns a "slice" of the original array based on the start and end
arguments. The slice includes the new array referenced by the start index
and up to but NOT including the end index itself. If "end" is not specified,
the end of the array is assumed.

splice(startindex,
[how_many], [valuel,

Deletes array elements starting from startindex, and replaces them with
valuel, value2 etc. Returns the elements deleted from array.

sort([SortFunction]) Sorts an array alphabetically and ascending. By passing in an optional
Sort Function, you may sort numerically and by other criteria as well.

toSource() Returns an array literal representing the specified array.

toString() Returns a string representing the array and its elements.

unshift(valuel, ...)

Adds the argument values to the beginning of the array, pushing existing
arrays back. Returns the new length of the array .Original array is
modified.

valueOf()

Returns the primitive value of the array.

shift()

Deletes and returns the first element within the array. Original array is
modified to account for the missing element (so 2nd element now
becomes the first etc).

slice(start, [end])

Returns a "slice" of the original array based on the start and end
arguments. The slice includes the new array referenced by the start index
and up to but NOT including the end index itself. If "end" is not specified,
the end of the array is assumed.

splice(startindex,

Deletes how_many array elements starting from startindex, and replaces

24x7 Scheduler

-14 -

JavaScript Syntax

[how_many], [valuel, them with valuel, value2 etc. Returns the elements deleted from array.

String Object

Description: Contains a string of characters.

String object supports the following properties and functions:

length This property returns the length of the string (# of characters).
charAt(x) Returns the character at the "x" position within the string.
charCodeAt(x) Returns the Unicode value of the character at position "x" within the

string.

concat(vl, v2,...)

Combines one or more strings (arguments v1, v2 etc) into the existing one
and returns the combined string. Original string is not modified.

fromCharCode(c1,
c2,...)

Returns a string created by using the specified sequence of Unicode
values (arguments c1, c2 etc). Method of String object, not String
instance. For example: String.fromCharCode().

indexOf(substr, [start])

Searches and (if found) returns the index number of the searched
character or substring within the string. If not found, -1 is returned. "Start"
is an optional argument specifying the position within string to begin the
search. Default is 0.

lastindexOf(substr,
[start])

Searches and (if found) returns the index number of the searched
character or substring within the string. Searches the string from end to
beginning. If not found, -1 is returned. "Start" is an optional argument
specifying the position within string to begin the search. Default is
string.length-1.

match(regexp)

Executes a search for a match within a string based on a regular
expression. It returns an array of information or null if no match is found.

replace(regexp,
replacetext)

Searches and replaces the regular expression portion (match) with the
replaced text instead.

search(regexp)

Tests for a match in a string. It returns the index of the match, or -1 if not
found.

slice(start, [end])

Returns a substring of the string based on the "start" and "end" index
arguments, NOT including the "end" index itself. "End" is optional, and if
none is specified, the slice includes all characters from "start" to end of
string.

split(delimiter, [limit])

Splits a string into many according to the specified delimiter, and returns
an array containing each element. The optional "limit" is an integer that
lets you specify the maximum number of elements to return.

substr(start, [length])

Returns the characters in a string beginning at "start" and through the
specified number of characters, "length”. "Length" is optional, and if
omitted, up to the end of the string is assumed.

substring(from, [to])

Returns the characters in a string between "from" and "to" indexes, NOT
including "to"
"To" is optional, and if omitted, up to the end of the string is assumed.

toLowerCase()

Returns the string with all of its characters converted to lowercase.

toUpperCase()

Returns the string with all of its characters converted to uppercase.

24x7 Scheduler

-15 -

JavaScript Syntax

Boolean Object

Description: This object is used to turn a value that is not boolean into a value that is boolean which is true or
false.

JavaScript supports the following functions of the Boolean object:

toString() Returns a string specifying the value of the Boolean, in this case, "true" or
"false."
valueOf() Returns the primitive value of a Boolean object.

Number Object

Description: The number object must have an instance created in order to use it. The number object has no
specific functions. The Number object exposes the following properties:

MAX_VALUE - The largest value that may be used in JavaScript.

MIN_VALUE - The smallest value that may be used in JavaScript.

NaN - Used to indicate a value is not a number. A number object may be set to this value to indicate that it is not
really a number, for example:

if (Month < 1 |] Month > 12)
{

}

NEGATIVE_INFINITY - The value returned if a negative overflow occurs. Any numeric value divided by this is 0.

Month = Number.NaN;

POSITIVE_INFINITY - The value returned if a positive value overflow occurs. Any numeric value divided by this
is 0.

prototype - For creating more properties.

Math Object

Description: Provides numerical constants and mathematical functions.

JavaScript supports the following mathematical functions (methods of the Math object):

Math.abs(a)

the absolute value of a

Math.acos(a)

arc cosine of a

Math.asin(a)

arc sine of a

Math.atan(a)

arc tangent of a

Math.atan2(a,b)

arc tangent of a/b

Math.ceil(a)

integer closest to a and not less than a

Math.cos(a)

cosine of a

Math.exp(a)

exponent of a

Math.floor(a)

integer closest to and not greater than a

Math.log(a)

log of a base e

Math.max(a,b)

the maximum of aand b

24x7 Scheduler

-16 -

JavaScript Syntax

Math.min(a,b) the minimum of a and b

Math.pow(a,b) a to the power b

Math.random() pseudorandom number in the range 0 to 1
Math.round(a) integer closest to a

Math.sin(a) sine of a

Math.sqrt(a) square root of a

Math.tan(a) tangent of a

Date Object

Description: Stores a date in the number of milliseconds since 1/1/1970, 00:00:00, and returns a date string in
the format "Thu, 11 Jan 1996 06:20:00 GMT".

Date object supports the following constructors:

Date() Use the current date and time to create an instance of the object date.

Date(dateString) Use the date specified by the string to create the instance of the date
object. String format is "month day, year hours:minutes:seconds".

Date(year, month, day) | Create an instance of date with the specified values. Year is 0 to 99.

Date(year, month, day, | Create an instance of date with the specified values.
hours, minutes,
seconds)

Extension Objects

24x7 Scheduler Multi-platform Edition extends standard set of JavaScript objects with additional objects specific
to scheduler operations and process management. All these functions are described in detail in the JavaScript
Automation Extensions topic. The following extension objects are supported:

Process Object

Description: Provides functions for starting, stopping and listing system processes. For more information see
Process Operations topic.

RunAndWaitinfo Object

Description: Helper object provides additional functions and attributed in process management operations. For
more information see Process runAndWait and SSH runCommand topics.

Directory Object

Description: Provides functions for manipulating file directories and listing directory contents. For more
information see Directory Operations topic.

24x7 Scheduler -17 -

JavaScript Syntax

File Object

Description: Provides functions and for manipulating files and reporting file attributes, including file creating,
update, deletion and many other. For more information see High-Level File Operations and Low-Level File

Operations topics.

FTP Object

Description: Provides functions for performing common FTP operations, also functions for replicating files over
FTP connections. For more information see FTP Operations topic.

Comparelnfo Object

Description: Helper object provides additional functions and attributed for FTP operations. For more
information see compareDir topic.

Mail Object

Description: Provides functions for sending email messages including messages with file attachments. For
more information see Mail Operations topic.

Scheduler Object

Description: Provides many functions for starting and stopping jobs, manipulating job properties, writing
messages to the system job log, and other. For more information see Scheduler Operations topic.

Web Object

Description: Provides functions for performing common Web operations, also common functions for converting
String, JSON, and XML data. For more information see Web Operations topic.

Reserved Words

The following words cannot be used as user objects or variables in coding JavaScript. Not all are currently in
use by JavaScript-they are reserved for future use.

abstract for public
boolean function return
break goto short

byte if Static

24x7 Scheduler -18 -

JavaScript Syntax

case implements super
catch import Switch
char in synchronize
const instanceOf this
continue int throw
default interface Throws

do long transient
double native true

else new try
extends null var

false package void
final private while
finally protected with
float

24x7 Scheduler

-19 -

JavaScript Automation Extensions

JavaScript Automation Extensions

24x7 Scheduler provides a predefined set of embedded JavaScript automation objects and functions. To access
these functions you can use already defined global JavaScript variables ‘File’, 'Process’, 'Directory’, ‘Scheduler’.
For example,

var pid = Process.run(*'notepad™);
Scheduler _messageBox(*'pid: ™ + pid);

This job will run notepad application and show message box with the internal process ID.

Process Operations

run

Prototype: int Process.run(String command)
Description: Runs the specified program or command.

Parameters:
command — is a string whose value is the full or partial path and filename of a shell command or other
executable file.

Return: returns the internal process ID. This ID can be used only in this job scope to kill the created process, for
example.

Example:
var pid = Process.run(*'/bin/cp /home/trade/db.dat /home/backup™);

runAndWait

Prototype: RunAndWaitinfo Process.runAndWait(String command, int timeout)

Description: Runs the specified program or command and enters an efficient wait state until this process
finishes or the timeout interval elapses. In the latter case, the 24x7 Scheduler forcedly terminates the process.

Parameters:

command — is a string whose value is the full or partial path and filename of a shell command or other
executable file.

timeout — A number of milliseconds whose value is the maximum time interval within which you allow the
specified process to run. Use 0 timeout to allow infinite waiting.

Return: returns RunAndWaitInfo structure that has the following functions:

String getOutput() — returns a string variable that receives the data written by the created process to the
standard error and standard output.

int getProcessld() — returns the internal process ID.

24x7 Scheduler -20 -

JavaScript Automation Extensions

Example:

var runinfo = Process.runAndWait(*"/bin/ls", 0);
Scheduler _messageBox(output: " + runinfo.getOutput());

Kill

Prototype: Process.kill(int pid)
Description: Terminates process by the internal pid.
Parameters:

pid — the internal pid of the process to kill.

Example:

var pid = Process.run(*'/bin/sleep 60™);
if (Scheduler.messageBox("Do you want to Kill the program?*))

Process.kill(pid);
3

list

Prototype: String Process.list()

Description: Returns list of operation system processes including process IDs and names. Do not confuse
system process IDs and names with IDs and names of 24x7 Scheduler jobs and internal processes.

Return: Returns process list as a string. Each process is separated by a new line
Example:

var processList = Process.list()
Scheduler _messageBox(processList);

Directory Operations
dir
Prototype: String Directory.dir(String fileMask)
Description: Returns comma-separated list of files in the current working directory.

Parameters:

fileMask - a string whose value is the file mask to use for searching (* - any word, ? — any symbol).

Return: Returns comma-separated list of files in the current working directory.

24x7 Scheduler -21-

JavaScript Automation Extensions

Example:
var files = Directory.dir("*.1og");
Scheduler _messageBox(*'Log files: " + Ffiles);
remoteDir

Prototype: String Dir.remoteDir(String agentName, String fileMask, String user, String password)
Description: Returns comma-separated list of files in the specified directory on the remote computer.
Parameters:

agentName - a string whose value is the name of the remote agent profile to use for remote computer
connection.

fileMask - a string whose value is the file mask to use for searching (* - any word, ? — any symbol).
user - a string whose value is the user name for authentication on the remote system.

Password - a string whose value is the user password for authentication on the remote system.

Return: Comma-separated list of files in the remote directory.

Example:

var files = Directory.remoteDir('agent DB2 server",
""/home/db2/1ogs/*.1og",
'oscar', ''secret');

Scheduler._messageBox(*'Log files: " + Ffiles);

getWorkDir

Prototype: String Directory.getWorkDir()

Description: Reports name of the current working directory. The default working directory is the 24x7
Scheduler installation directory.

Return: Returns full path to the working directory.

Example:
var dir = Directory.getWorkDir();
Scheduler _messageBox(""Working directory: " + dir);
setWorkDir

Prototype: Directory.setWorkDir(String path)

24x7 Scheduler -22-

JavaScript Automation Extensions

Description: Changes current working directory. Each JavaScript job session runs in its own environment and
has session logical working directory. Setting of working directory affects Directory.dir, Directory.getWorkDir,
Process.run, Process.runAndWait functions. It does not affect high-level or low-level operations.

Parameters:

path - a string whose value is the full or relative path to the new working directory.

Example:

Directory.setWorkDir("*/home/test');
var dir = Directory.getWorkDir();
Scheduler.messageBox(""Working directory: " + dir);

clean

Prototype: void Directory.clean(String path)
Description: Deletes all files and subdirectories recursively in the specified directory.
Parameters:

path - A string whose value is the full or relative path to the directory.

Example:
Directory.clean(*'/home/test™);

create

Prototype: void Directory.create(String path)
Description: Creates the specified directory and recursively all subdirectories in the specified path.
Parameters:

path - A string whose value is the full or relative path to the directory.

Example:
Directory.create("'/home/test/dirl/dir2/dir3");

remove

Prototype: void Directory.remove(String path)

24x7 Scheduler -23-

JavaScript Automation Extensions

Description: Removes the specified directory and recursively all files and subdirectories in the specified path.
Parameters:

path - A string whose value is the full or relative path to the directory.

Example:
Directory.remove("'/home/test/dirl ');

move

Prototype: void Directory.move(String sourcePath, String targetPath)

Description: Moves the specified directory and all its content to a different location. The new location can be on
the same or different drive, volume, and/or file-system. If the target path already exists and non-empty, its
content is replaced with the moved files and directories.

Parameters:
sourcePath - A string whose value is the full or relative path to the directory to move.

targetPath - A string whose value is the full or relative path to the new location.

Example:
Directory.move("'C:\\data\\dirl"”, "D:\\archive'™);

copyMerge

Prototype: void Directory.copyMerge(String sourcePath, String targetPath)

Description: Copies the specified directory and all its content to a different location. The target location can be
on the same or different drive, volume, and/or file-system. If the target path doesn't exist, it is created. If the
target path already exists, the content is merged - files from the source directory overwrite files with the same
names in the target directory; files that exist in the target directory only, remain in that directory.

Parameters:
sourcePath - A string whose value is the full or relative path to the directory to copy.

targetPath - A string whose value is the full or relative path to the target location.

Example:
Directory.copyMerge(*'C:\\data\\dirl", "D:\\archive');

24x7 Scheduler -24 -

JavaScript Automation Extensions

copyReplace

Prototype: void Directory.copyReplace(String sourcePath, String targetPath)

Description: Copies the specified directory and all its content to a different location. The target location can be
on the same or different drive, volume, and/or file-system. If the target path doesn't exist, it is created. If the
target path already exists, the content is replaced with files and directories from the target directory.

Parameters:
sourcePath - A string whose value is the full or relative path to the directory to copy.

targetPath - A string whose value is the full or relative path to the target location.

Example:
Directory.copyReplace(*'C:\\data\\dirl"”, "D:\\archive');

exists

Prototype: boolean Directory.exists(String dirName)

Description: Tests for existence of the specified directory.

Parameters:

dirName - A string whose value is the full or relative path to the directory to test.

Return: Returns TRUE if file exists or FALSE otherwise.

Example:

var dirFound = Directory.exists(""/var/logs/load");
if (dirFound) Scheduler.messageBox(*'Directory found'™);

size

Prototype: long Directory.size(String path)

Description: Reports total size of all files in the specified directory.
Parameters:

path - A string whose value is the full or relative path to the directory.

Return: Returns total size of all files.

Example:
var totalSize = Directory.size(''/var/messages');

24x7 Scheduler -25-

JavaScript Automation Extensions

Zip
Prototype: void Directory.zip(String zipName, String path)
Description: Zips all files and recursively all directories in the specified path into a ZIP file.
Parameters:
zipName - A string whose value is the name of the target zip file.

path - A string whose value is the full or relative path to the directory.

Example:

Directory.zip(*'/home/archive/latest_zip", "/home/incoming/transactions');
Directory.clean("/home/incoming/transactions ');

High-Level File Operations

connectFile

Description: This high-level file operation is used to open Microsoft Excel and Microsoft Access files for
read/write operations and work with them using SQL queries as if Excel worksheets were database systems
containing tables. For more information see connectFile topic in the Database Operations chapter.

exists

Prototype: boolean File.exists(String fileName)
Description: Checks if the specified file exists.
Parameters:

fileName - a string whose value is the name of the file that you want to check.

Return: Returns TRUE if file exists or FALSE otherwise
Example:

var fileFound = File.exists('/var/mail/message.txt™);
if (FileFound) Scheduler.messageBox("'File found™);

24x7 Scheduler -26 -

JavaScript Automation Extensions

remove

Prototype: File.remove(String fileName)

Description: Deletes the specified file. The file must exist.

Parameters:

fileName - a string whose value is the name of the file that you want to delete.

Example:

File.remove(''/var/mail/message.txt'");
Scheduler _messageBox("'File has been deleted™);

rename

Prototype: File.rename(String fileOldName, String fileNewName)

Description: Renames the specified file. The file must exist.

Parameters:

fileOldName - a string whose value is the name of the file that you want to rename.

fileNewName - a string whose value is the new name.

Example:

File.rename(*'/var/mail/message.txt"”, "/var/mail/message.old™);
Scheduler _messageBox("'File has been renamed™);

copy

Prototype: File.copy(String sourceFileName, String targetFileName)

Description: Copies the specified file. The file must exist. The new file can be created in the same or different
directory.

Parameters:
sourceFileName - a string whose value is the name of the file that you want to copy.

targetFileName - a string whose value is the name of the target file.

Example:

File.copy("'/var/mail/message.txt", "/var/mail/message.bak');
Scheduler _messageBox(*'File has been copied™);

24x7 Scheduler - 27 -

JavaScript Automation Extensions

move

Prototype: File.nove(String sourceFileName, String targetFileName)

Description: Moves the specified file. The file must exist. The old file is copied first and if the copy operation
success the old file is deleted.

Parameters:
sourceFileName - a string whose value is the name of the file that you want to move.

targetFileName - a string whose value is the name of the target file.

Example:

File.move('/var/mail/message.txt", "/var/mail _bak/message.txt');
Scheduler _messageBox("'File has been moved™);

dateTime

Prototype: Date File.dateTime(String fileName)
Description: Reports the date and time that a file was last modified.
Parameters:

filename - a string whose value is the file name.

Return: Returns Date object with the following functions:
int getYear() — returns year.

int getMonth() — returns month.

int getDate() — retunrs day.

int getHour() — returns hour.

int getMinute() — returns minute.

int getSecond() — returns second.

Example:
var dateTime = File.dateTime("/var/log/messages”);
Scheduler .messageBox(dateTime.getYear() + "." + dateTime.getMonth() + "." +
dateTime.getDate() + " " + dateTime.getHour() + ":" +
dateTime.getMinute() + ":" + dateTime.getSecond());

save

Prototype: File.save(String fileName, String text)

Description: Saves text data in the specified file.

24x7 Scheduler -28 -

JavaScript Automation Extensions

Parameters:
fileName - a string variable whose value is the file name into which you want to save the text.

text - a string whose value is the data want to save in the file.

Example:

var text = "The first line\nThe second line";
File.save(''/home/scheduler/test.txt", text);

size

Prototype: long File.size(String fileName)
Description: Reports the length of a file in bytes.
Parameters:

fileName - a string whose value is the name of the file whose length you want to obtain. If file is not located in
the current working directory, you must specify the fully qualified file name.

Return: Returns length of the file.

Example:
var TileSize = File.size("/var/log/messages™);
Scheduler _messageBox(*'log file size: " + FileSize);
checksum

Prototype: long File.checksum(String fileName)
Description: Reports file CRC checksum.
Parameters:

fileName - A string whose value is the name of the file.

Return: Returns CRC checksum of the file.

Example:

var FileCRC = File.checksum(*'/var/log/messages');
Scheduler.messageBox("'Checksum: " + FfileCRC);

24x7 Scheduler -29 -

JavaScript Automation Extensions

splitName

Prototype: String[2] File.splitName(String fileFullName)
Description: Separates file path part and file name part for a given full file name or file mask.
Parameters:

fileName - a string whose value is the full or partial file name.

Return: Returns string array containing 2 elements: element with index 0 contains file path, element with index
1 contains file name.

Example:

var parts = File_splitName("'/home/data/archive/filel_gz");
Scheduler _messageBox('File path: " + parts[0]);
Scheduler._messageBox(""File name: " + parts[1]);

readAll

Prototype: String File.readAll(String fileName)
Description: Loads entire file contents into script variable.
Parameters:

fileName - a string whose value is the name of the file that you want to read.

Return: Returns the buffer with file contents
Example:

var content = File.readAll(*"/var/mail/message.txt™);
Scheduler _messageBox(content) ;

transfer
Prototype: void File.transfer(String agentName, String sourceFile, String targetFile, String user, String
password)

Description: Copies the specified file from local to remote system. The file is automatically compressed and
encrypted on the local system, and then after transmission it is automatically decrypted and decompressed on
the remote system.

Parameters:

agentName - a string whose value is name of the remote agent profile to connect to.

sourceFile — a string whose value is the name of the file on the local system of network share to transfer.
targetFile - a string whose value is the name of the file on the remote system.

user — a string whose value is the user name for authentication on the remote system.

password — a string whose value is the user password for authentication on the remote system.

24x7 Scheduler -30 -

JavaScript Automation Extensions

Return: None
Example:

File._transfer('RemoteServer', *"c:\\data\\dataOl.csv",
"/home/oracle/data/data0Ol.csv', "oscar" , '"secret');

transferEx

Prototype: void File.transferEx(String agentName, String direction, String[] sourceFiles, String[] targetFiles,
String user, String password)

Description: Copies the specified files from local to remote system or from remote to local. The files are
automatically compressed and encrypted on the source system, and then after transmission, they are
automatically decrypted and decompressed on the target system.

Parameters:
agentName - a string whose value is name of the remote agent profile to connect to.

direction - a string constant specifying direction in which to transfer the specified files. The value must be either
FromRemote or ToRemote.

SourceFiles[] — a string array of names of files to transfer."/>

TargetFiles[] — a string array of names of files to be updated or created on the target system. The number of
files in this array must be the same as the number of files in the sourceFiles array. File names and locations can
differ from the source.

user — a string whose value is the user name for authentication on the remote system.

password — a string whose value is the user password for authentication on the remote system.

Return: None
Example:

var srcFiles = new Array();

srcFiles[0] ""/home/oracle/data/data0l.csv";
srcFiles[1] ""/home/oracle/data04/format.txt";
var dstFiles = new Array();

dstFiles[0] "c:\\data\\data0Ol.csv";
dstFiles[1] "c:\\data\\format.txt";

File.transferEx("'RemoteServer"', "FromRemote", srcFiles, dstFiles,
'oscar™ , ''secret);

unzip

Prototype: void File.unzip(String zipName, String destDir)

Description: Unzips files from the specified ZIP archive. The specified ZIP file can have any extension but
must be in the standard ZIP format.

24x7 Scheduler -31-

JavaScript Automation Extensions

Parameters:

zipName - a string whose value is the name of the zip file to unzip.

destFile — a string whose value is the name of the file on the local system of network share to transfer.

Return: None
Example:
File.unzip("c:\\data\\dataOl.zip", "c:\\data\\unzipped");

Zip
Prototype: void File.zip(String zipName, String files)
Description: Zips one or multiple files to the specified ZIP file.
Parameters:
zipName - a string whose value is the name of the target zip file.

files — a string whose value is the comma-separated list of names of files to zip.

Return: None
Example:

File.zip("c:\\backup\\data@T"yyyymmdd".zip",
"c:\\data\\filel,c:\\data\\file2,c:\\data\\file3");

ZIpEXx

Prototype: void File.zipEx(String zipName, String[] files)
Description: Zips one or multiple files to the specified ZIP file.
Parameters:

zipName - a string whose value is the name of the target zip file.

files[] — a string array of names of files to zip.

Return: None
Example:

var srcFiles = new Array(Q);

srcFiles[0] ""/home/oracle/data/data0l.csv";

srcFiles[1] ""/home/oracle/data04/data02.csv";

srcFiles[2] = "/home/oracle/dataO4/format.txt";

File.zipEx(""/home/archive/data@T"yyyymmdd".zip", srcFiles);

24x7 Scheduler

-32 -

JavaScript Automation Extensions

Low-Level File Operations

open

Prototype: int File.open(String fileName, String fileAccess, boolean append)

Description: Opens the specified file for reading or writing and assigns it a unique file number. You use this
number to identify the file when you read, write, or close the file.

Parameters:

fileName - a string whose value is the name of the file you want to open. If fleName is not in the operating
system's search path, you must enter the fully qualified name.

fileAccess — a string constant whose value specifies whether the file is opened for reading or writing. Values
are:

e "Read" - Read-only access
o "Write" - Write-only access
e "ReadWrite" - Both read and write access

append - A boolean whose value specifies whether existing data in the file is overwritten when file is opened for
write operation. ‘append’ is ignored if the fileAccess argument is "Read". Values are:

e True - Write data to the end of the file.
e False - Replace all existing data in the file.

Return: Returns the internal file number assigned to the opened file.

Example:

var data = '"1234567890";

File.save("test.txt", data);

var fileNumber = File.open(test._txt", "Read', false);
var read = File.read(fileNumber, 4);

Scheduler _messageBox(*'read 4 symbols: "™ + read);
File.close(fileNumber);

read

Prototype: String File.read(int fileNumber, int bytes)

Description: Reads data from the file associated with the specified file number, which was assigned to the file
with the File.open operation.

Parameters:

fileNumber - a number whose value is the file number previously assigned to the file when it was opened by
File.open operation.

Bytes - a number whose value indicates how many bytes you want to read from the file.

Return: returns a string variable with the read data
Example:
var data = ''1234567890";

24x7 Scheduler -33-

JavaScript Automation Extensions

File.save("test.txt", data);

var fileNumber = File.open(test._txt", "Read', false);
var read = File.read(fileNumber, 4);

Scheduler _messageBox(*'read 4 symbols: "™ + read);
File.close(fileNumber);

write

Prototype: File.write(int fileNumber, String data)

Description: Writes data to the file associated with the specified file number, which was assigned to the file with
the File.open operation.

Parameters:

fileNumber a number whose value is the file number previously assigned to the file when it was opened by
File.open operation.

data - a string whose value is the text that you want to write to the file.

Example:

var data = '"1234567890";

File.save("test.txt", data);

var fileNumber = File.open(test._txt", "ReadWrite', true);
File.write(fileNumber, "_appended_string");

var read = File.readAll(""test._txt");
Scheduler._messageBox("modified file: " + read);

File.close(fileNumber);

close

Prototype: File.close(int fileNumber)

Description: Closes the file associated with the specified file number. The file number was assigned to the file
with the File.open operation.

Parameters:

fileNumber - the number assigned to the file you want to close. The File.open operation returns the file number
when it opens the file.

Example:

var fileNumber = File.open("log.txt", "ReadWrite", true);
File.write(fileNumber, "log message");
File.close(fileNumber);

getPos

Prototype: int File.getPos(int fileNumber)

24x7 Scheduler -34 -

JavaScript Automation Extensions

Description: Reports current position in the specified file previously opened by File.open operation.
Parameters:

fileNumber - the file number previously assigned to the file when it was opened by File.open operation.

Return: returns the file position after the read/write operation or zero if no operation has been performed after
file opening.

Example:
var data = '"1234567890";
File.save("test.txt", data);
var fileNumber = File.open(test._txt", "ReadWrite', true);
File.write(fileNumber, " _appended_string");
var filePos = File._getPos(fileNumber);
Scheduler.messageBox("'Current file position: " + FfilePos);
File.close(fileNumber);

setPos

Prototype: File.setPos(int fileNumber, int pos, String origin)

Description: Moves the file pointer to the specified position in a file previously opened by File.open operation.
The file pointer is the position in the file at which the next read or write begins.

Parameters:

fileNumber - the file number previously assigned to the file when it was opened by File.open operation.
pos — numeric position to be set

origin - a string constant whose value specifies from where you want to set the position. Values are:

e "START" - At the beginning of the file.
e "CURRENT" - At the current position.
e "END" - At the end of the file.

Example:

var data = '"'1234567890";

File.save("test._txt", data);

var FileNumber = File.open("test.txt", "ReadWrite', false);
File.setPos(fileNumber, 5, "START");

File.write(fileNumber, "**");

var read = File.readAll("test._txt");

Scheduler _messageBox("modified file: " + read);
File.close(fileNumber);

24x7 Scheduler -35-

JavaScript Automation Extensions

Database Operations

connect

Prototype: void Database.connect(String profile)

Description: Establishes database connection using the specified database profile.

% Important Notes:

e Database.connect method must be executed before other database actions can be processed.

e One job may have only one database connection open at a time. However, multiple jobs may have
multiple database connections opened simultaneously. The same job can also open and close
multiple connections sequentially.

e All other database methods executed after Database.connect are sent to the database specified in
the profile.

e You are responsible for closing database connections. Failure to close connections may lead to
resource leaks. Use Database.disconnect method to close previously opened connection.

Parameters:
profile - A string whose value is the name of the profile defined in system settings.

Examples:

// connect to database server and execute stored procedure

Database.connect("PRODUCTION");
Database.execute("CALL MySchema.MyStoredProcedure(“paraml®, "param®)");

//retrieve some values from the database
var newVal = Database.retrieve("SELECT * FROM MySchema.NyTable " +
"WHERE date_idx = trunc(sysdate)');

// disconnect from database server and save results in a local file

Database.disconnect();
File.save("my_file_txt", newval);

disconnect

Prototype: void Database.disconnect()

Description: Disconnects from the database server.

Parameters:

None — this method has no parameters.

Examples:

// connect to database server and execute stored procedure
Database.connect("PRODUCTION");
Database.execute("CALL MySchema.MyStoredProcedure(“paraml®, "param®)");
//retrieve some values from the database
var newVal = Database.retrieve("SELECT * FROM MySchema.NyTable " +
"WHERE date_idx = trunc(sysdate)');
// disconnect from database server and save results in a local file

24x7 Scheduler -36 -

JavaScript Automation Extensions

Database.disconnect();
File.save("my_file_txt", newval);

connectFile

Prototype: void Database.connectFile(String fleName, String fileType)

Description: Establishes file-based database connection using the specified file name and type. This method
can be used with Microsoft Excel and Microsoft Access files only. This method can be called on Windows
based systems only. The Excel and Access interfaces implemented in 24x7 depend on the availability of Excel
and Access database drivers, which are pre-installed by default on all Windows systems. Refer to Microsoft
documentation for the functions and SQL command syntax supported by the version of the driver(s) installed on
your system.

*, Important Notes:

e Database.connectFile method can be used on Windows based systems only. be executed before
other database actions can be processed.

e Database.connectFile method must be executed before other database actions can be processed.

e One job may have only one database connection open at a time. However, multiple jobs may have
multiple database connections opened simultaneously. The same job can also open and close
multiple connections sequentially.

e All other database methods executed after Database.connectFile are sent to the database
specified in the profile.

e You are responsible for closing database connections. Failure to close connections may lead to
resource leaks. Use Database.disconnect method to close previously opened connection.

Parameters:
fileName - A string whose value is the fully qualified name of the file to connect to.

fileType - A string whose value is the type of the file to connect to. This parameter controls type of the database
driver the script engine will attempt to load and use for the following database operations. The supported values

are:
e Excel
e Access

Examples:

// connect to Excel file and retrieve data from worksheet Transactions

// for a given store

Database.connectFile("C:\\ExIFiles\\Trans\\August\\Storel.xls", "Excel");

//retrieve records for August 15

var records = Database.retrieve('"SELECT * FROM [Transactions] " +
"WHERE [Store Name] = "Store 1°');

// disconnect from the Excel file and save results in a local text file

Database.disconnect();

File.save("my_file.txt", records);

24x7 Scheduler -37 -

JavaScript Automation Extensions

execute

Prototype: int Database.execute(String sql)
Description: Executes SQL statement that does not produce a result set.
Parameters:

sql - A string whose value is a valid SQL command that you want to send to the database.

Return: Returns number of records affected by the executed database command. This value is reported by the
database server and makes sense only for commands updating, inserting or deleting data in the database.

Examples:

// connect to database server and execute stored procedure
Database.connect("PRODUCTION");

Database.execute("CALL MySchema.MyStoredProcedure(“paraml®, “param®)");
// disconnect from the database

Database.disconnect();

retrieve

Prototype: String Database.retrieve(String sql)

Description: Retrieves data from the database.

& Important Notes: Do not use this command to retrieve large volumes of data because the returned
data is stored in memory. If you need to process large data volumes, use Database.export method.

Parameters:

sql - A string whose value is a valid SQL command that you want to send to the database and expert to return
results. The command could be specified a in a form of SELECT statement, a database stored procedure call,
or a SQL batch, if supported by your database server.

Return: Returns result set as a tab-separated multi-line data value or a single data value, in case the command
returns only a single value.

~= Note: NULL values are returned as empty strings. All non-string values are converted to string
equivalents using default data conversion rules for the system running the scheduler and may depend on
your local regional settings.

Examples:

// connect to database server and execute stored procedure

Database.connect("PRODUCTION");

var someValue = Database.retrieve("'SELECT max(ColX) FROM MySchema._NyTable " +
"WHERE date_idx = trunc(sysdate)");

// disconnect from the database

Database.disconnect();

24x7 Scheduler -38-

JavaScript Automation Extensions

exportToFile

Prototype: void Database.exportToFile(String command, string localFile [, String separator])
Description: Retrieves data from the database and saves it into a local file.
Parameters:

command - A string whose value is either a valid SQL command that you want to send to the database and
expert to return results or a name of a database table or view. The command could be a in a form of SELECT
statement, database stored procedure call or a SQL batch. In case the specified command consist of a single
word, it is assumed to be a table or view name and the required SQL query is constructed automatically using
this name.

localFile - A string whose value is the name of the file into which you want to write the exported data.

separator - This optional parameter can be used to specify column separator symbol(s). If not specified, tab
character is used by default.

Return: Returns number of records exported.

Examples:

// connect to database server and execute stored procedure

Database.connect("PRODUCTION");

//retrieve values from the database using complete query

Database.exportToFile(""SELECT * FROM MyTable WHERE colA = 1 ORDER BY colB",
""/home/data_exports/data.txt");

//retrieve values from the database using table name

Database.exportToFile("MyTable", '"/home/data_exports/mytable_data.txt");

// disconnect from the database

Database.disconnect();

FTP Operations

appendFile

Prototype: FTP.appendFile(String server, String user, String password, String source, String target)

Description: Transfers a file from local system to the specified remote FTP server and stores it under the
specified file name, creating a new remote file in the process or appending data to an existing remote file.

Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server
password - A string whose value is the password to use to log on to the server
source - A string whose value is the name of the file to transfer from the local system

target - A string whose value is the name of the file to create on the remote system. Both source and target file
can be either partially or fully qualified file names relative to the current directory.

24x7 Scheduler -39 -

JavaScript Automation Extensions

ﬁ Note: To transfer multiple files in one pass, specify the source files as a comma separated list. The target
files must be also specified as a comma separated list. Make sure to specify the same number of file names in
the source and target file lists.

Example:
var server = "'my server'';
var user = "test'';
var pass = "1111";

FTP.appendFile(server, user, pass, "c:\\l.txt, c:\\2.txt",
"/pub/l._txt, /pub/2_txt"™);

putFile

Prototype: FTP.putFile(String server, String user, String password, String source, String target)

Description: Transfers a file from local system to the specified remote FTP server and stores it under the
specified file name, creating a new remote file in the process.

Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server

password - A string whose value is the password to use to log on to the server

source - A string whose value is the name of the file to transfer from the local system

target - A string whose value is the name of the file to create on the remote system.

% Note: To transfer multiple files in one pass, specify the source files as a comma separated list.

The target files must be also specified as a comma separated list. Make sure to specify the same
number of file names in the source and target file lists.

Example:
var server = "'my server';
var user = "'test';
var pass = "1111";

FTP_putFile(server, user, pass, "c:\\l.txt", "/pub/1l.txt"™);

getFile

Prototype: FTP.getFile(String server, String user, String password, String source, String target)

Description: Retrieves a file from the specified FTP server and stores it under the specified file name, creating
a new local file in the process.

Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

24x7 Scheduler -40 -

JavaScript Automation Extensions

user - A string whose value is the name of the user to log on to the server

password - A string whose value is the password to use to log on to the server

source - A string whose value is the name of the file to retrieve from the remote system.

target - A string whose value is the name of the file to create on the local system.

% Note: To transfer multiple files in one pass, specify the source files as a comma separated list. The target

files must be also specified as a comma separated list. Make sure to specify the same number of file names in
the source and target file lists.

Example:
var server = "'my server'';
var user = "'test';
var pass = "1111";

FTP.getFile(server, user, pass, "l1.txt", "e:\\l.txt");
FTP.getFile(server, user, pass, "/pub/INSTALL"™, "e:\\INSTALL'™);

resumeFile

Prototype: FTP.resumeFile(String server, String user, String password, String source, String target)

Description: Retrieves a file from the specified FTP server and stores it under the specified file name, creating
a new local file in the process or appending to local file if it already exists. FTP.resumeFile statement is identical
to FTP.getFile statement except that it attempts to resume broken downloads or perform incremental downloads
of files whose size have increased since the last download.

Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server

password - A string whose value is the password to use to log on to the server

source - A string whose value is the name of the file to retrieve from the remote system.

target - A string whose value is the name of the file to create on the local system.

* Note: To transfer multiple files in one pass, specify the source files as a comma separated list.

The target files must be also specified as a comma separated list. Make sure to specify the same
number of file names in the source and target file lists.

Example:
var server = "'my server'';
var user = "test'';
var pass = "1111";

FTP.resumeFile(server, user, pass, "1.txt", "e:\\l.txt");

24x7 Scheduler -41 -

JavaScript Automation Extensions

renamekFile

Prototype: FTP.renameFile(String server, String user, String password, String oldname, String newname)
Description: Renames the specified remote file on the specified FTP server.
Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server
password - A string whose value is the password to use to log on to the server
oldname - A string whose value is the name of the file to rename.

newname - A string whose value is the new name of the file.

Example:
var server = ''my server'';
var user = "'test';
var pass = "1111";

FTP.renameFile(server, user, pass, "/pub/l.txt", "/pub/2._txt");

deleteFile

Prototype: FTP.deleteFile(String server, String user, String password, String file)
Description: Renames the specified remote file on the specified FTP server..
Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server

password - A string whose value is the password to use to log on to the server

file- A string whose value is the name of the file that you want to delete.

Al Note: FTP.deleteFile statement can delete multiple files in one pass. This is more efficient than
calling FTP.deleteFile for each file separately, which requires a separate FTP connection for every

file. To delete multiple files in one pass, specify multiple files names in the file parameter as a
comma separated list.

Example:
var server = "'my server'';
var user = "test'';
var pass = "1111";

FTP.deleteFile(server, user, pass, "/pub/l.txt, /pub/2.txt");

24x7 Scheduler -42 -

JavaScript Automation Extensions

fileSize

Prototype: int FTP.fileSize(String server, String user, String password, String file)
Description: Reports size of the specified file on the specified FTP server.
Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server
password - A string whose value is the password to use to log on to the server

file - A string whose value is the name of the file that you want to check.

Return: Returns file size in bytes (-1 if file not found).

Example:
var server = ''my server'';
var user = "'test';
var pass = "1111";

size = FTP.fileSize(server, user, pass, "/pub/l.txt™);
Scheduler _messageBox(size);

fileExists

Prototype: boolean FTP.fileExists(String server, String user, String password, String file)
Description: Reports whether the specified file exists on the specified FTP server.
Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server
password - A string whose value is the password to use to log on to the server

file- A string whose value is the name of the file that you want to check.

Return: Returns TRUE if file exists, and FALSE otherwise.

Example:
var server = "'my server';
var user = "'test';
var pass = "1111";

if(FTP.fileExists(server, user, pass, ''/pub/README™))
Scheduler.messageBox("'"Found README file in the pub directory!");

24x7 Scheduler -43 -

JavaScript Automation Extensions

fileDateTime

dir

Prototype: Date FTP.fileDateTime(String server, String user, String password, String file)
Description: Reports date and time of the specified file on the specified FTP server.
Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server

password - A string whose value is the password to use to log on to the server

file - A string whose value is the name of the file that you want to check.

Return: Returns Date object. You can use the following functions to obtain date and time parts:

int getYear()
int getMonth()
int getDate()
int getHour()
int getMinute()
int getSecond()

Example:

var server = "'my server'';

var user = "'test';

var pass = "1111";

Date d = FTP.FfileDateTime(server, user, pass, "/pub/l._txt");

var str = "Date is " + d.getMonth() + '/" + d.getDate() + "/" +
d.getYear() + "/" + d.getHour() + ":" + d.getMinute() + ":" +
d.getSecond();

Scheduler _messageBox(str);

Prototype: String FTP.dir(String server, String user, String password, String fileMask)
Description: Returns comma-separated list of files in the specified directory on the specified FTP server
Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server
password - A string whose value is the password to use to log on to the server

fileMask — a string whose value is the file mask that you want to use to search for files. fileMask can
contain standard wildcard characters (* and ?). fileMask can contain full or partial file path.

Return: Returns comma-separated list of file names matching the specified mask.

Usage: On DOS/Windows based FTP hosts the FTP.dir statement is equivalent to DOS dir
command. For most UNIX flavors, the FTP.dir statement is equivalent to UNIX Is command.

24x7 Scheduler - 44 -

JavaScript Automation Extensions

+ Note: If you don't include file path to the fileMask then .dir statement returns files from the
*® If you don't include file path to the fileMask then FTP.di files f h
FTP server current directory.

Example:
var server = 'my server'";
var user = "'test';
var pass = ""1111";
var list = FTP_dir(server, user, pass, "/pub/docs/*_html');

Scheduler _messageBox(list);

dirCreate

Prototype: FTP.dirCreate(String server, String user, String password, String dir)
Description: Creates a new directory on remote FTP server.
Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server
password - A string whose value is the password to use to log on to the server

dir - A string whose value is the full name of the directory to be created

Example:
var server = "'my server'';
var user = "test'';
var pass = "1111";

FTP.dirCreate(server, user, pass, ''/pub/dirl/dir2™);

dirDelete

Prototype: FTP.dirDelete(String server, String user, String password, String dir)

Description: Deletes an existing directory on remote FTP server. If the directory is not empty all contained files
or subdirectories are deleted recursively.

Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server
password - A string whose value is the password to use to log on to the server

dir - A string whose value is the full name of the directory to be deleted

24x7 Scheduler -45 -

JavaScript Automation Extensions

Example:
var server = "'my server';
var user = "'test';
var pass = "1111";

FTP._dirDelete(server, user, pass, '/pub/dirl/dir2™);

command

Prototype: FTP.command(String server, String user, String password, String command)
Description: Executes arbitrary commands directly on the specified FTP server.
Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server
password - A string whose value is the password to use to log on to the server
command - A string whose value is the command that you want to execute on the server

Usage: The FTP.command statement allows you to execute commands directly on the FTP server. The
available commands vary depending on the type of server, and can usually be determined by logging on to the
server with the command line FTP client and using the "remotehelp” command. A typical output of "remotehelp
command looks like the following:

ftp> remotehelp
The following commands are recognized (* =>"s unimplemented).

USER PORT STOR MSAM™* RNTO NLST MKD CDuUP
PASS PASV APPE MRSQ* ABOR SITE XMKD XCUP
ACCT* TYPE MLFL* MRCP* DELE SYST RMD STOU
SMNT* STRU MATL* ALLO CwD STAT XRMD SIZE
REIN* MODE MSND* REST XCWD HELP PWD MDTM
QUIT RETR MSOM* RNFR LIST NOOP XPWD

% Note: You can use SITE EXEC command to execute operation system commands and run batch files and
other programs on the FTP server computer. In order for the host command to be successfully executed your
FTP server must support SITE EXEC command and this feature must not be disabled.

Example:
var server = "'my server'';
var user = "'test';
var pass = "1111";

FTP.command(server, user, pass,
"SITE EXEC touch —mct 200506161400.05 test.txt');

config

Prototype: void FTP.config(String property, String newValue)

24x7 Scheduler -46 -

JavaScript Automation Extensions

Description: Set various parameters for subsequent FTP operations executed in the same job.
Parameters:

property - A string whose value is the name of the property that you want to change. The following
properties are supported:

e "FTP PROTOCOL"

e "TRANSFER MODE"

e "LIST SEPARATOR"

e "PORT"

e "CONNECTION TYPE"

e "PRESERVE FILE TIMES"
e "SET TIME COMMAND"

e "TIME FORMAT"

e "TIME OFFSET"

new_value - A string whose value is the new value for the property that you want to change.

FTP PROTOCOL

The following values are supported for the "FTP PROTOCOL " property:

"FTP" — this is used for the classic FTP protocol

"SFTP" — this is used for secure FTP protocol which is an extension to SSH protocol.
"FTPS" — this is used for FTP over SSL channel protocol.

"SECURE" — this is a synonym for "SFTP" used for compatibility with the protocol name and options supported
by 24x7 Scheduler Windows Edition.

"SSL" — this is a synonym for "FTPS" protocol hame.
The default value is "FTP".

Use this property, to specify whether your want to use secure or non-secure FTP protocol for all subsequent
FTP commands executed in the same job. This setting applies to all statements that belong to the FTP group.

TRANSFER MODE

The following values are supported for the "TRANSFER MODE" property:
e "ASCII"
e "BINARY"

The default value is "BINARY".

LIST SEPARATOR

For the "LIST SEPARATOR" property, you can specify any desired symbol that you will use to separate multiple
files when performing multi-file FTP operations. The default value is comma. For more information, see
FTP.getFile, FETP.resumeFile, FTP.appendFile, ETP.putFile, and FTP.deleteFile statements.

24x7 Scheduler - 47 -

JavaScript Automation Extensions

PORT

Use the "PORT" property, to specify which port your want to use for all subsequent FTP commands executed in
the same job. This setting applies to all statements that begin with FTP prefix and also applies to the
FTP.syncDir and FTP.compareDir statements. The default FTP port is 21.

CONNECTION TYPE

The following values are supported for the "CONNECTION TYPE " property:
e "PASSIVE"
e "ACTIVE"

Use this property, to specify whether your want to use active or passive FTP connection mode. This setting
applies to all statements that begin with FTP prefix and to the FTP.syncDir and FTP.compareDir statements. If
you do not change this property, the "ACTIVE" mode is used by default.

PRESERVE FILE TIMES
SET TIME COMMAND
TIME FORMAT

TIME OFFSET

Properties "PRESERVE FILE TIMES", "SET TIME COMMAND", "TIME FORMAT", "TIME OFFSET" are used
together as a group. They control when and how to set date/time of transferred files.

% Important Note: Not all FTP servers support time commands. Check your FTP server documentation
before attempting to use time-related properties.

The following values are supported for the "PRESERVE FILE TIMES" property:
e "TRUE"
e "FALSE"

Use this property, to specify whether your want to preserve times of uploaded and downloaded files. The default
value is "FALSE" meaning that by default times of all uploaded and downloaded files are set to the current
system time.

The following values are supported for the "SET TIME COMMAND" property:
e " (an empty string)

e "[user specified host Operation System command]”

The default value is " which instructs the script engine to use the extended version of the MDTM command
supported by most modern FTP servers. If you specify some other non-empty value for the "SET TIME
COMMAND" property the script engine will attempt to execute that command as a FTP host operation system
command. For this purpose it executes FTP SITE EXEC command following by the specified host command. In
order for the host command to be successfully executed your FTP server must support SITE EXEC command
and this feature must not be disabled.

The "TIME FORMAT" property controls time format used with the user-defined command specified in the "SET
TIME COMMAND" property. The default value for "TIME FORMAT" property is YYYYMMDDHHMM.SS.

The "TIME OFFSET" property can be used to specify the difference in time between the host and the target
computer. In other words if the processing computer and the FTP server computer run in different time zones
you can use this property to specify the time difference. Generally speaking you can use this property to affect
how the file time is set when the value of "PRESERVE FILE TIMES" property is set to TRUE. Specify offset
value in seconds. The default value of the "TIME OFFSET" property is 0. You can specify both positive and

24x7 Scheduler -48 -

JavaScript Automation Extensions

negative values. A positive value causes the target file time to be adjusted forward; a negative value causes the
target file time to be adjusted backward.

Example:

// Connect to the ftp server on port 25 with passive ftp and time
// diff -3 hours, and sync some directories.

FTP_config("'PORT", 25);
FTP.config(""CONNECTION TYPE"™, "PASSIVE");
FTP_config("'PRESERVE FILE TIMES"™, "TRUE™);
FTP.config("TIME OFFSET', ''-10800");
FTP_config(""TRANSFER MODE™, "ASCII');
FTP.syncDir(*'LOCAL", "my.site.com", "testuser', "1111",

“c:\\wvar\\www", */pub/www/html/*,

true, false, true, true);

compareDir
Prototype: Comparelnfo FTP.compareDir(String server, String user, String password, String localDir, String
remoteDir, boolean nameComparison)
Description: Compares files in two directories residing on local and remote computers using FTP protocol.
Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server
password - A string whose value is the password to use to log on to the server

local_dir - A string whose value is the name of the local directory containing files that you want to
compare.

remote_dir - A string whose value is the name of the remote directory on FTP server containing files
that you want to compare.

name_comparison - A boolean whose value should be TRUE if you want to compare files by name
only, and FALSE if you want to compare them by name and date of the last modification.

Return: Returns Comparelnfo object with the following functions:

String getLocalList () — Returns list of files from the local_dir directory, which are different from files in the
remote_dir directory or could not be found in the remote directory.

String getRemoteList() — Returns list of files from the remote_dir directory, which are different from files in the
local_dir directory or could not be found in the remote directory.

Example:
var server = "'my server';
var user = "'test';
var pass = "1111";

FTP_config("'PRESERVE FILE TIMES"™, "TRUE™);

FTP.config(""TIME OFFSET'", ''-10800");

var result = FTP.compareDir(server, user, pass, '"e:\\Interpub\\wwwroot",
/", false);

24x7 Scheduler -49 -

JavaScript Automation Extensions

Scheduler.messageBox("'Local files that are different remote files " +
result_getLocalList());

Scheduler.messageBox("'Remote files that are different from local files" +
result._getRemoteList());

syncDir
Prototype: FTP.syncDir(String master, String server, String user, String password, String sourceDir, String
targetDir, boolean addNew, boolean deleteMissing, boolean updateOld, boolean subDir)

Description: Synchronizes and replicates files across two directories residing on local and remote computers
using FTP protocol.

Parameters:

server - A string whose value is FTP server host name (for example, ftp.microsoft.com) or IP address in ASCII
dotted-decimal format (for example, 11.0.1.45)

user - A string whose value is the name of the user to log on to the server
password - A string whose value is the password to use to log on to the server

master - A string whose value instructs 24x7 Scheduler which computer is the "master" computer containing
files and subdirectories that you want to replicate. The following values are supported:

e "REMOTE" - remote FTP server computer contains the "master” directory

e "LOCAL" - the local computer contains the "master" directory

source_dir - A string whose value is the name of the "master" directory containing files and subdirectories that
you want to replicate

target_dir - A string whose value is the name of the target directory to which files and subdirectories are
replicated

add_new - A boolean whose value should be TRUE if you want to replicate files that exist only in the source_dir,
and FALSE otherwise

delete_missing - A boolean whose value should be TRUE if you want to delete from the target_dir directory
these files that exist in the target_dir but do not exist in the source_dir, and FALSE otherwise

update_old - A boolean whose value should be TRUE if you want to update older versions of files in the
target_dir directory, and FALSE otherwise. A file is considered as old if it exists in both target_dir and source_dir
directories and the target_dir version of that file has a date time older than the version from the source_dir
directory.

subdir - A boolean whose value should be TRUE if you want to update recursive subdirectories. Note that if you
enable recursion then all other replication options described above apply to all subdirectories of all nesting
levels starting with the source_dir.

Usage: Use FTP.syncDir statement to automate synchronization and replication for a group of files residing on
different computers. The directory you are copying files from is also known as the master directory or primary
site-replication

% Note: To update only old files set update_old parameter to TRUE and set both add_new and
delete_missing parameters to FALSE.

To perform full 2-way file synchronization between 2 directories: run FTP.syncFTPDir using "REMOTE" for the
master with delete_missing set to FALSE and everything else set to TRUE. Repeat FTP.syncFTPDir using
"LOCAL" for the master with delete_missing set to FALSE and everything else set to TRUE.

24x7 Scheduler -50 -

JavaScript Automation Extensions

Example:
var server = ''my server'';
var user = "'test';
var pass = "1111";

FTP_config("'PRESERVE FILE TIMES"™, "TRUE™);
FTP.config(""TIME OFFSET'", ''-10800");
FTP.syncDir(*'LOCAL", server, user, pass, '"c:\\buf2", "/pub",
true, // add new files
false, // don"t delete missing
true, // update old
true // recursively sync subdirectories
);
FTP.syncDir("'REMOTE", server, user, pass, "/pub™, "c:\\buf2",
true, // add new files
false, // don"t delete missing
true, // update old
true // recursively sync subdirectories

SSH Operations

config

Prototype: void SSH.config(String property, String newValue)
Description: Set various parameters for subsequent SSH operations executed in the same job.

Parameters:

property - A string whose value is the name of the property that you want to change. The following
properties are supported:

e "PORT"
e "CONNECT TIMEOUT" — connect timeout in seconds

e "COMMAND TIMEOUT" — command timeout in seconds, can be used to prevent run-away SSH
processes

new_value - A string whose value is the new value for the property that you want to change.

Example:
SSH.config(""CONNECT TIMEOUT"™, "'60');

runCommand

Prototype: RunAndWaitinfo SSH.runCommand(String server, String user, String password, String command)

Description: Executes remote command on the specified SSH server.

24x7 Scheduler -51-

JavaScript Automation Extensions

Parameters:
server - A string whose value is the name or IP address of SSH server computer.
user - A string whose value is the name of the user to log on to the server.
password - A string whose value is the password to use to log on to the server
command - A string whose value is the command to execute.
Return
RunAndWaitinfo - Returns RunAndWaitInfo structure supporting the following functions:
String getOutput() - returns data written by the created process to the standard error and standard output.

int getProcessld() - returns internal process ID associated with the command. The value is used internally
only. It's not the PID of the remote process.

int getExitCode() - returns process/command exit code.

String getErrors() - returns data written by the created process to the standard error, use this if you need
errors separately.

Example:

var ret = SSH.run('198.300.2.155", "test-user", 'test-password",
"/bin/sh echo "Hello world®™);
var cmdOutput = ret.getOutput();

MQ Operations

sendMessage

Prototype: void MQ.sendMessage(String profile, String key, String value)

Description: Sends event message with a string based value to a given MQ broker.

Parameters:

profile - A string whose value is the name of MQ broker profile defined in the scheduler settings.

key - A string whose value is the message key. The key message key is only used
with Apache Kafka. For all other types of brokers specify an empty string or a
null value.

value - A string whose value is used for the message body.

Example:

// this sends a message containing JSON content
MQ.sendMessage (“test-rabbitmg-profile”, ***, "{\"age\": 250, \"brand\": \"ACME\'"}";

receiveAllMessages

Prototype: int MQ.receiveAllMessages(String profile, String dir)

24x7 Scheduler -52-

JavaScript Automation Extensions

Description: Downloads all new event messages from a given MQ broker. Can be also used to drain the event
message queue.

Parameters:
profile - A string whose value is the name of MQ broker profile defined in the scheduler settings.
dir - A string whose value is the full or relative path of the directory to save
the downloaded messages to.
Return
RunAndWaitInfo - Returns RunAndWaitInfo structure supporting the following functions:

String getOutput() - returns data written by the created process to the standard error and standard output.

int getProcessld() - returns internal process ID associated with the command. The value is used internally
only. It's not the PID of the remote process.

int getExitCode() - returns process/command exit code.

String getErrors() - returns data written by the created process to the standard error, use this if you need
errors separately.

Example:

var num_of_messages = MQ.receiveAl IMessages("test-rabbitmg-profile",
""/home/my/messages'’) ;

Mail Operations

send

Prototype: void Mail.send(String sender, String password, String recipient, String subject, String message)

Description: Establishes a new mail session and sends the specified mail message. The message is sent
using the email server specified in scheduler's settings.

Parameters:

sender - A string whose is the sender’s email address

password - A string whose value is the user's mail system password

recipient - A string variable whose value is the email address of the recipient for the message.

ﬁ Note: To send the same message to multiple recipients you can specify their addresses as a comma-
separated list

subject - A string variable whose value is the subject line, displayed in the message header

message - A string variable whose value is the content of the message body

Example:

Mail .send("'my@mycompany .com™, "password", 'operations@mycompany.com',
"test subject’, '"test message");

24x7 Scheduler -53-

JavaScript Automation Extensions

sendWithAttachment

Prototype: void Mail.sendWithAttachment(String sender, String password, String recipient, String subject,
String message, String attachments)

Description: Establishes a new mail session and sends the specified mail message. The message is sent
using the email server specified in scheduler's settings.

Parameters:

sender - A string whose is the sender’s email address

password - A string whose value is the user's mail system password

recipient - A string variable whose value is the email address of the recipient for the message.

~= Note: To send the same message to multiple recipients you can specify their addresses as a comma-
separated list

subject - A string variable whose value is the subject line, displayed in the message header
message - A string variable whose value is the content of the message body

attachment - A string variable whose value is the name of the file(s) to attach to the message.

ﬁ Note: To send multiple file attachments you can specify file names as a comma-separated list

Example:

Mai l .sendWithAttachment(*'my@mycompany.com™, "‘password",
""operations@mycompany.com', "test subject', "test message",
“/home/dirl/filel,/home/dir2/file2");

Web Operations

callService
Prototype: void Web.callService(String endpoint, String requestType, String[] headers, String data, String
outputType, int expectedResponseCode, String outputFile)
Description: Calls a Web service, optionally saving returned data to the specified file.
Parameters:

Endpoint - A string whose value is the service endpoint / URL (Internet standard Uniform Resource Locator,
e.g. service endpoint).

requestType - A string whose value is the web request type, typically "POST" or "GET" value.

Headers - A string array containing colon-separated header name / value pairs, for example: ["Cache-Control:no
cache", "Content-Type:application/json"].

Data - A string whose value is the data to be posted to the specified service. In case the no data is required
which is typical for GET requests, specify an empty string.

outputType - A string whose value is MIME compatible data format name for the data returned by the service,
for example, "application/xml" or "text/html". you can specify an empty string to use the default data format.

24x7 Scheduler -54 -

JavaScript Automation Extensions

expectedResponseCode - A number whose value is expected code, typically this is 200 which means HTTP
200 indicating successful execution. To accept any response code without validation, specify zero.

outputFile - A string whose value is the name of the local file in which you want to save the returned web service
data. If you specify an empty string, the output file is not going to be created.

Examples:

Web._callService("'https://my-company.org/my-service/methodl", "GET",
: ["Content-Type:application/json'], "{ "some-name': \"George\" }",
"text/html™, 200, "");
Web.callService("'https://my-company.org/my-service/methodl", "GET",

: ["Content-Type:application/json'], "{ '"some-name™: \"George\" }",
"text/xml", 0, "C:\\MyFiles\\new_data.xml");

getFile

Prototype: void Web.getFile(String url, String localFile)

Description: Downloads file from the specified URL. Downloaded file can be an HTML file or a file of any other
type, including binary files.

Parameters:

url - A string whose value is the URL (Internet standard Uniform Resource Locator, e.g. Web address) that
points to the web file that you want to download.

localFile - A string whose value is the name of a local file in which you want to save the returned data.

Examples:

Web.getFile("http://www.mycompany.com/hello._htm", "/home/myfiles/hello.htm”);

Web.getFile("http://www._mycompany.com/data/data.xls ",
"C:\\ExcelFiles\\new_data.xlIs");

postData

Prototype: void Web.postData(String url, String data, String localFile)
Description: Performs an HTTP POST, allowing a job to send a request through CGI, NSAPI, or ISAPI.
Parameters:

url - A string whose value is the URL (Internet standard Uniform Resource Locator, e.g. Web address) to post
data to.

localFile - A string whose value is the name of the local file in which you want to save the web server response
received after POST.

Examples:

Web .postData(*"http://www.mycompany.com/cgi-bin/add_customer.cgi',
""name=Greg+Smith&company=ACME+Corp&phone=212-123-1234&" +

24x7 Scheduler -55-

JavaScript Automation Extensions

"fax=212-123-5678&emai l=gsmith%40acme.com",
“c:\\temp\\confirm_htm");

getDataWithLogin

Prototype: void Web.getDataWithLogin(String loginUrl, String loginData, String errorTokens, String dataUrl,
String outputFile, String logoutUrl)

Description: Performs HTTP POST and then immediately HTTP GET, allowing a job to submit a request
through CGI, NSAPI, or ISAPI call to a login form on a remote web site, and then, in the same authenticated
user session download data from the same or a different location through second CGI, NSAPI, or ISAPI call.

Parameters:

loginUrl - A string whose value is the URL (Internet standard Uniform Resource Locator, e.g. Web address) of
the login form which can be used to login to the web site.

loginData- A string whose value is the data to be posted to the specified loginURL.

errorTokens — A string containing comma-separated substrings that you want to check in the results returned by

the login form in to verify whether the login succeeded or not. If you do not want to check the login form output,
specify an empty string for this argument. Note that the search for substrings is case-insensitive.

dataUrl — A string whose value is the URL (Internet standard Uniform Resource Locator, e.g. Web address) to
get data from.

outputFile - A string whose value is the name of the local file in which you want to save the returned web server

response and data.

logoutUrl - A string whose value is the URL (Internet standard Uniform Resource Locator, e.g. Web address) of

the logout page, which can be used to logout from the web site. The logoutURL argument value is optional. In
case logout is not required, specify an empty string as value for this argument.

Examples:

Web. getDataWithLogin ("http://www._mycompany.com/cgi-bin/login.cgi",
""'user=George&password=secret&action=status&job=triggerJobA”, "failed",
"http://www.mycompany.com/cgi-bin/status.cgi’,

"c:\\temp\\status_htm", "http://www.mycompany.com/cgi-bin/logout._cgi');

postDataWithLogin

Prototype: void void Web.postDataWithLogin(String loginUrl, String loginData, String errorTokens, String
dataUrl, String data, String outputFile, String logoutUrl)

Description: Performs double HTTP POST, allowing a job to submit a request through CGI, NSAPI, or ISAPI
call to a login form on a remote web site, and then, in the same authenticated user session upload data to the
same or a different location through second CGI, NSAPI, or ISAPI call.

Parameters:

loginUrl - A string whose value is the URL (Internet standard Uniform Resource Locator, e.g. Web address) of
the login form which can be used to login to the web site.

loginData- A string whose value is the data to be posted to the specified loginURL.

24x7 Scheduler -56 -

JavaScript Automation Extensions

errorTokens — A string containing comma-separated substrings that you want to check in the results returned by
the login form in to verify whether the login succeeded or not. If you do not want to check the login form output,
specify an empty string for this argument. Note that the search for substrings is case-insensitive.

dataUrl — A string whose value is the URL (Internet standard Uniform Resource Locator, e.g. Web address) to
get data from.

data - A string whose value is the data to be posted to the specified dataURL"/>

outputFile - A string whose value is the name of the local file in which you want to save the returned web server
response and data.

logoutUrl - A string whose value is the URL (Internet standard Uniform Resource Locator, e.g. Web address) of
the logout page, which can be used to logout from the web site. The logoutURL argument value is optional. In
case logout is not required, specify an empty string as value for this argument.

Examples:

Web. postDataWithLogin ("http://www.mycompany.com/cgi-bin/login.cgi”,
""user=George&password=secret’, "failed",
"http://www._mycompany.com/cgi-bin/submit.cgi’,
""name=Greg+Smith&company=ACME+Corp&phone=212-123-1234&" +
"fax=212-123-5678&emai l=gsmith%40acme.com",
"c:\\temp\\status.htm",
"http://www._mycompany.com/cgi-bin/logout.cgi');

HTMLEncode

Prototype: String Web.HTMLencode(String data)

Description: Applies HTML-encoding to the specified text string. This function provides convenient means for
encoding data to be used in HTML and XML files.

Parameters:
data - A string value that you want to encode.

return - HTML encoded string. The encoding replaces characters that cannot be used in HTML/XML data with
their encoded values.

Examples:

var encodedText = Web.HTMLencode("A \"test string\" here & there");
Web .postData(""http://www.mycompany.com/cgi-bin/add_customer.cgi',
encodedText, "c:\\temp\\confirm_htm");

URLEnNncode

Prototype: String Web.URLencode(String data)

Description: Applies URL-encoding to the specified text string. This function provides convenient means for
encoding strings to be used in a data for posting to web sites in URL parameters.

24x7 Scheduler -57 -

JavaScript Automation Extensions

Parameters:
data - A string value that you want to encode.

return - URL encoded string. The encoding is performed according to RFC 1738 standard.

Examples:

var encodedValue = Web.URLEncode("A \'"test string\" here & there");
Web.getFile("http://www.mycompany.com/cgi-bin/add_customer.cgi? " +
"data="" + encodedValue, "c:\\temp\\confirm_htm");

stripHTML

Prototype: String Web.stripHTML(String data)

Description: Removes HTML tags from the specified string and converts it to plain text, replacing special HTML
codes with regular characters.

Parameters:
data - An HTML text that you want to convert.

return - Converted HTML text..

Examples:
var valueWithoutTags = Web.stripHTML("'<p>Test 1 and 2</br></p>");

openPage

Prototype: void Web.openPage(String url)

Description: Opens default Web browser, displaying the specified URL.
Parameters:

url - Web page URL.

Examples:

Web.openPage("https://google.com™);

stringToJson

Prototype: JSONObject Web.stringToJson(String data)
Description: Deserializes String data to JSON object
Parameters:

data - String data that you want to convert to JSON.
Return - Returns JSON object.

24x7 Scheduler -58 -

JavaScript Automation Extensions

Examples:

JSONObject json = Web.stringToJdson("{ \"person_name\": \"George\" }'");
var name = json.person_name;

jsonToString

Prototype: String Web.jsonToString(JSONObject json)
Description: Serializes JSON object to string.
Parameters:

json - JSON data that you want to convert to String.

return - String representation of JSON object.

Examples:

JSONObject json = { "person_name'": "George" };
var str = Web.jsonToString(json);

xmlStringToJson

Prototype: JSONObject Web.xmlIStringToJson(String xml)
Description: Converts XML data to JSON object.

Parameters:

xml - XML data in string format that you want to convert to JSON.

return - Returns JSON object.

Examples:

JSONObject json = Web.xmlToJdson("{ ''<root><person name=\"George\''/></root>");

xmlFileToJson

Prototype: Web.xmlIFileToJson(String file)

Description: Converts data saved in an XML file to JSON object.
Parameters:

file - Full file path to XML file whose contents you want to convert to JSON.

return - JSON object.

Examples:
JSONObject json = Web.xmlFileToJdson("/home/24x7/data/customerA.xml');

24x7 Scheduler -59 -

JavaScript Automation Extensions

jsonFileToJson

Prototype: JSONObject Web.jsonFileToJson(String file)

Description: Converts data saved in a JSON file to JSON object.
Parameters:

file - Full file path to JSON file whose contents you want to convert to JSON.

return - Returns JSON object.

Examples:
JSONObject json = Web.jsonFileToJdson(""/home/24x7/data/customerA.json™);

jsonToXmlString

Prototype: String Web.jsonToXmIString(JSONODbiject json)
Description: Converts JSON object to XML

Parameters:

json - JSON object that you want to convert to XML.

return - String representation of XML data.

Examples:

JSONObject json = Web.jsonFileToJdson(""/home/24x7/data/customerA.json™);
String xml = Web_jsonToXmIString(json);

stringToJsonArray

Prototype: JSONArray Web.stringToJsonArray(String data)
Description: Deserializes String to JSONArray.
Parameters:

data - A String representation of JSON array. Strings in the array could be simple or could be string
representations of complex JSONObject(s).

return - Returns JSONArray object..

Examples:

JSONArray jsonArray = Web.stringToJdsonArray("[{ \"person_name\": \"George\" },
{ \"person_name\": \"Matt\" }
{ \"person_name\": \"Julie\" } 1');

JSONObject firstPerson = Web.stringToJdson(jsonArray.get(0));

var name = FirstPerson.person_name;

24x7 Scheduler -60 -

JavaScript Automation Extensions

jsonArrayToString

Prototype: String Web.jsonArrayToString(JSONArray data)

Description: Serializes JSONArray to string

Parameters:

data - A JSON array. Elements in the array could be simple or could be complex JSONObject(s).

return - Returns String.

Examples:

JSONArray jsonArray = [
{ "person_name'" : "'George" },
{ "person_name" : "Matt" }
{ "person_name" : "Julie" }];
var str = Web.jsonArrayToString(JsonArray);

stringArrayToJsonArray

Prototype: JSONArray Web.stringArrayToJsonArray(String[] dataArray)
Description: Deserializes String array to JSONArray
Parameters:

dataArray - Array of String objects that you want to convert to JSONArray. Strings in the array could be simple
or could be string representations of complex JSONObject(s).

return - Returns JSONArray object.

Examples:

var stringArray = [

“{ \"person_name\" : \"George\" }",

"L \"person_name\" : \"Matt\" }"

“{ \"person_name\" : \"Julie\" }"];
JSONArray jsonArray = Web.jsonArrayToString(stringArray);

jsonArrayToStringArray

Prototype: String[] Web.jsonArrayToStringArray(JSONArray jsonArray)
Description: Serializes JISONArray object to String array
Parameters:

jsonArray - JSONArray that you want to convert to String array. Converted Strings in the array could be simple
or could be string representations of complex JSONObject. Individual String array elements can be deserialized
to JSONODbject(s) using stringToJson() function.

return - Returns String array.

24x7 Scheduler -61-

JavaScript Automation Extensions

Examples:

JSONArray jsonArray = [

{ "person_name'" : "‘George" },
{ "person_name" : "Matt" }
{ "person_name" : "Julie" }];

var strArray = Web.jsonArrayToStringArray(JsonArray);

Scheduler Operations

messageBox

Prototype: Scheduler.messageBox(String text)

Description: Displays graphical interactive message box containing user-defined message.

% Important Notes: Because the messageBox requires user intervention you should use this statement for
job debugging purposes only and comment it out in production jobs. Also note that messageBox cannot be used
in detached jobs and when 24x7 Scheduler is run in command console or run as a background daemon or
Windows service.

Parameters:

text — text to be displayed.

Example:

Scheduler._messageBox("'test message');

pause

Prototype: Scheduler.pause(int seconds)
Description: Causes the job to enter an efficient wait state until the specified time elapses.
Parameters:

seconds — pause duration in seconds.

Example:
Scheduler _pause(30);

logAddMessage

Prototype: void Scheduler.logAddMessage(String type, int jobld, String jobName, String message)

24x7 Scheduler -62 -

JavaScript Automation Extensions

Description: Adds new message to the job log. The message can be viewed using the Log Viewer utility. If the
job id matches an existing job the message also appears in the filtered job log.

Parameters:

type — A string constant indicating message type. Must be one of the following:
e "INFO"
e "WARNING"
e "ERROR"

jobld - ID of an existing job. If you don't want to hard-code job id of the active job you can use @V"job_id"
macro in place of this parameter. Use zero for generic messages, not associated with any job.

jobName' - name of an existing job. If you don't want to hard-code job name of the active job you can use
@V"job_name" macro in place of this parameter.

message — the message you want to add to the log.

Example:

Scheduler.logAddMessage ("WARNING®, 10, "Test job",
"No files found for processing. The job will abort now®);

runJob

Prototype: int Scheduler.runJob(int jobID)
Description: Immediately runs the specified job and waits for the job to complete.
Parameters:

joblD - ID of an existing job.

Return: Returns unique run-time job number of the launched job.
Example:
var runld = Scheduler.runJob(125);

runRemoteJob

Prototype: int Scheduler.runRemoteJob(int jobID, String agent)

Description: Immediately runs the specified job and waits for the job to complete. The job execution place is
controlled by the agent parameter.

Parameters:
joblD - ID of an existing job.

agent — Name of an agent profile configured in the scheduler settings for running remote jobs.

Return: Returns unique run-time job number of the launched job.

24x7 Scheduler -63 -

JavaScript Automation Extensions

Example:

var runld = Scheduler.runRemoteJob(125, "QA server');

queuedob

Prototype: int Scheduler.queueJob(int jobID)

Description: Submits the specified job to the associated job queue according to the job priority. All currently
running jobs continue running and not affected by the submitted job. The queue begins running the submitted
job as soon as it completes running all jobs previously queued in the same queue with the same or higher
priority and already running.

Parameters:

joblD - ID of an existing job.

Return: Returns unique run-time job number of the queued job.

Example:
var runld = Scheduler.queuedob(125);

gueueRemoteJob

Prototype: int Scheduler.queueJob(int jobID, String agent)

Description: Submits the specified job to the associated job queue according to the job priority. All currently
running jobs continue running and not affected by the submitted job. The queue begins running the submitted
job as soon as it completes running all jobs previously queued in the same queue with the same or higher
priority and already running.

Parameters:
joblD - ID of an existing job.

agent — Name of an agent profile configured in the scheduler settings for running remote jobs.

Return: Returns unique run-time job number of the queued job.
Example:

var runld = Scheduler.queuedob(125);

killJob

Prototype: Scheduler.killJob(int jobRunID)

24x7 Scheduler -64 -

JavaScript Automation Extensions

Description: Terminates the specified job and in case of a program type job also removes the associated child
processes. If the job is still queued and not yet started, killJob simply removes the job from the queue.

Parameters:

jobRunID - Run-time number of the job returned by Scheduler.runJob, Scheduler.queueJob, runRemoteJob
statements.

Example:

var runlD = Scheduler.queuedob(125);
Scheduler_pause(60);
Scheduler _killJob(runlID);

deleteJob

Prototype: Scheduler.deleteJob(int jobID)

Description: Deletes the specified job from the job database. Any already queued or running instances of that
job will remain in the job queue.

Parameters:

joblD - ID of an existing job.

Example:
Scheduler._deletedob(125);

createJob

Prototype: int Scheduler.createJob(String JDL)
Description: Creates a new job and saves its definition in the job database.
Parameters:

JDL - The Job definition in JDL format. For a wide variety of examples see job templates available in the [24x7
install directory]\Template subdirectory. For a list and description of supported JDL commands see Job
Properties in JDL Format topic.

Usage: Use Scheduler.createJob in your scripts to programmatically create new jobs. Use
Scheduler.setJobProperty method to modify properties of existing job.

Return: Returns unique number identifying the created job in the job database.

Example:

var JDL = "NAME=My job\n" +
"JOB_TYPE=P\n" +
""COMMAND=/bin/sh —c /home/john/mybatch.sh\n" +
""'SCHEDULE_TYPE=0\n"" +
“"START_TIME=12:00\n"" +

24x7 Scheduler -65 -

JavaScript Automation Extensions

""START_DATE=2005-10-17"
var joblD = Scheduler.createJob(JDL);

disableJob

Prototype: Scheduler.disableJob(int jobID)

Description: Disables the specified job in the job database. This will prevent the job from starting again. Any
already queued or running instances of that job will remain in the job queue. As opposite to
Scheduler.deleteJob, this statement does not delete the job definition.

Parameters:

joblD - ID of an existing job.

Example:
Scheduler._disableJob(125);

enableJob

Prototype: Scheduler.enableJob(int jobID)
Description: Enabled the specified job in the job database.
Parameters:

joblD - ID of an existing job

Example:
Scheduler.enabledob(125);

setJobProperty

Prototype: Scheduler.setJobProperty(int joblD, String propertyName, String newValue)

Description: Changes value of the specified job property in the job database. The change does not affect
already queued or running instances of that job.

Parameters:
joblD - ID of an existing job

propertyName - The name of job property whose value you want to change For a list and description of
supported JDL commands see Job Properties in JDL Format topic.

newValue - The new value for the specified property

24x7 Scheduler -66 -

JavaScript Automation Extensions

Example:

Scheduler.setJobProperty(125, "QUEUE"™, "Reports");
Scheduler _setJobProperty(125, "COMMAND", "/bin/sh —c /batch/report2_sh™);

getJobProperty

Prototype: String Scheduler.getJobProperty(int joblD, String propertyName)
Description: Returns value of the specified job property.

Parameters:

joblD - ID of an existing job

propertyName - The name of job property whose value you want to obtain. For a list and description of
supported JDL commands see Job Properties in JDL Format topic.

Return: Returns current value of the requested job property

Example:
var command = Scheduler._getJobProperty(125, "COMMAND™);

setJobVariable

Prototype: Scheduler.setJobVariable(int jobID, String variableName, String newValue)

Description: Changes value of the specified job dynamic variable. The change does not affect already queued
or running instances of that job.

Parameters:
joblD - ID of an existing job

variableName - The name of job dynamic variable whose value you want to change. Note that you define job
variables in the JSON object created in the Job Variables property — also see Variables page in the Job
Wizard.

newValue - The new value for the specified variable in string format regardless of the variable's data type

24x7 Scheduler -67 -

JavaScript Automation Extensions

Job Praperties Wizard - Step 10 of 11 X

Here you can modfy JSOM cade far dynamic job variables. You can
declare variables as nesded. Nots, variable values can be passed

| Lg in rur-time through job dependencies. See Help for requirements and
examples For declaring job variables using J50M nokation.

"batchstartstep”: "seal’,
“"batchsend": "fscripts{b2send.sh"
"somethingElse"; 12345

-

[Heb | <Back | Mext> J@oto.. v | FEnish | Cancel

Example:

Scheduler_setJobVariable(125, "batchStartStep', "unpack™);
Scheduler.setJobVariable(@V'job_id", "batchSend", "/scripts/b2send.sh");

getJobVariable

Prototype: String Scheduler.getJobVariable(int jobID, String variableName)
Description: Returns value of the specified job property.

Parameters:

joblD - ID of an existing job

variableName - The name of job dynamic variable whose value you want to retrieve. Note that you define job
variables in the JSON object created in the Job Variables property — also see Variables page in the Job

Return: Returns current value of the requested job variable or an error value in case the specified name cannot
be found.

Example:
var batchSendCommand = Scheduler.getJobProperty(@vV'job_id", "batchSend");

findJob

Prototype: Scheduler. int Scheduler.findJob(String name)
Description: Finds a job with the specified name.
Parameters:

name - A string whose value is the job name to search.

Return: Returns unique identifier for the found job or -1 if no match found. In case multiple jobs match the
specified name, id of the first matching job is returned.

24x7 Scheduler -68 -

JavaScript Automation Extensions

Example:

var jobld = Scheduler.findJob("File Mover");
if (Jobld = -1)
Scheduler.runJob(jobld);
else
Scheduler.raiseError(1001, "Unable to find File Mover job!'");

getJobs

Prototype: int[] Scheduler.getJobs()
Description: Returns array of job ids in the current job database.
Parameters:

none
Return: Returns unique identifiers for all jobs as an array of integer values.

Example:

// retrieve job command lines and disable all jobs
var jobArray = Scheduler.getJobs();
for(var j = 0; j < jobArray.length; j ++)

var command = Scheduler.getJobProperty(jobArray[j], "COMMAND"

Scheduler _disableJob(jobArray[j]):

getFolders

Prototype: int[] Scheduler.getFolders ()
Description: Returns array of folder ids in the current job database.
Parameters:

none
Return: Returns unique identifiers for all folders as an array of integer values.

Example:

// retrieve array of folder identifiers
var folderArray = Scheduler._.getFolders();

24x7 Scheduler

- 69 -

JavaScript Automation Extensions

raiseError

Prototype: Scheduler.raiseError(int errorCode, String errorMessage)
Description: Makes the job script to fail with the specified error code and message
Parameters:

erroCode - Numeric code value associated with the error

errorMessage — Text of the error message.

Example:
var server = "'my server'';
var user = "'test';
var pass = "1111";

if (IFTP_fileExists(server, user, pass, "/pub/README™))
Scheduler.raiseError(1001, "README file not found!');

stdError

Prototype: void Scheduler.stdError(String text)
Description: Prints message to the standard error stream, typically the console.
Parameters:

text - Text to output.
Return: None

Example:
Scheduler.stdError(“'Unable to delete file xyz.txt");

stdOutput

Prototype: void Scheduler.stdOutput(String text)
Description: Prints message to the standard output stream, typically the console.
Parameters:

text - Text to output.

Return: None

24x7 Scheduler -70 -

JavaScript Automation Extensions

Example:
Scheduler.stdOutput(*'Successfully deleted file xyz.txt");

stdinput

Prototype: String Scheduler.stdInput()
Description: Reads text from the standard input stream, typically from the console.
Parameters:

None

Return: Returns text line from the input stream. WARNING: If the input stream is empty, the process will pause
and wait for the input data.

Example:

var input = Scheduler._stdinput();
Scheduler.messageBox("'You entered: " + input);

exitProcess

Prototype: void Scheduler.exitProcess(int exitCode)

Description: Terminates the job process. Can be called in detached jobs only.
Parameters:

exitCode - Exit code of the terminated process.

Return: None

Example:

// terminate the current job process with exit code 5
Scheduler _exitProcess(5) ;

performBackup

Prototype: void Scheduler. performBackup (String destinationPath)
Description: Creates a backup of the job database and system settings.
Parameters:

destinationPath — The full path to the backup file

24x7 Scheduler -71-

JavaScript Automation Extensions

Return: None

Example:

// creates backup of the job database and system settings
Scheduler .performBackup(*'/home/24x7/backups/24x7-backup-@T" ' dd-mmm-yyyy'"'*) ;

removeOldBackups

Prototype: void Scheduler. removeOldBackups (String destinationDir, int age)

Description: Removes old backup files older than the number of days specified in the age parameter, and
reclaims disk space.

Parameters:
destinationDir — The path to the directory containing backup file

age — backup file age in days.
Return: None

Example:

// creates backup of the job database and system settings
Scheduler.removeOldBackups(*'/home/24x7/backups', 7);

24x7 Scheduler -72 -

Job Properties in JDL Format

Job Properties in JDL Format

All job properties are documented in the 24x7 Scheduler User's Guide. This topic can be used as a quick reference

for supported job properties and their JDL names.

Job Definition Language (JDL) supports the following property names:

Property Name
ACCOUNT

ALL_DAY_TYPE

AGENT

ASYNC
AS_GROUP
BACKUP_AGENT
BACKUP_HOST
CALENDAR
COMMAND
DAY_END_TIME
DAY_LIST

DAY_NAME

DAY_NUMBER
DAY_START_TIME
DELAY
DELETE_RULE

DESCRIPTION
DISABLE_ON_ERROR
DISABLED
DETACHED

Meaning

E-mail Account such as user ID, profile, or e-mail address (e-mail
watch job).

The actual value may differ for different e-mail interfaces. For a MAPI
interface you should use the name of the MAPI profile you use when
logging on to the e-mail system. For Lotus Notes you should use the
name of the user (or ID) you use when logging on to the Lotus Notes.
For SMTP you should use your e-mail address.

All Day Schedule Type, one of the following: R, L (R - recursive,
repeat at specified intervals; L - fixed time list)

Same as Host (see Host description)

Asynchronous Process, one of the following: Y, N (yes, no)
Name of Auto-scaling group assigned to the job

Same as Backup Host (see Backup Host description)
Backup Remote Host (e.g. Backup Remote Agent name)
Name of the Calendar object assigned to the job

Program Command Line

Daily End Time for "all day" jobs with limited run-time interval

Monthly Schedule List of fixed Day Numbers, numbers must be in
1..31 range. Example: 1,3,5,7,14. This property is shared with
TIME_LIST property for All Day Schedule.

Monthly Schedule Day Name, one of the following: Monday ,
Tuesday , Wednesday, Thursday, Friday, Saturday, Sunday,
Weekend , Weekday

Monthly Schedule Day Number, a number from 1 — 31 range
Daily Start Time for "all day" jobs with limited run-time interval
Allowed Job Delay Interval (minutes)

Delete, Move, and Rename Semaphore File Rules, one of the
following: D, A, B, M, E, R, C, F, G (D - do not delete, move, rename;
A - delete after job run; B - delete before job run; M - move before job
run; E - move after job run; R - rename before job run; C - rename
after job run; F - move and rename before job run; G - move and
rename after job run)

Job Description
Disable Job on Error, one of the following: Y, N (yes, no)
Job Disabled Status, one of the following: Y, N (yes, no)

Detached Job, one of the following: Y, N (yes, no).

24x7 Scheduler

-73-

Job Properties in JDL Format

END_DATE
END_TIME
EXIT_CODE
FILE

FOLDER

FOLDER_NAME

FRIDAY
HOST
ID

IGNORE_ERRORS
INIT_TIMEOUT
INTERVAL
JOB_PASSWORD

JOB_TYPE
KEYSTROKE

LOG
MESSAGE

MESSAGE_ACTION_TYPE

% Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

Last Job Start Date
Last Job Start Date
Exit Code Condition (as a string expression)

Semaphore File Names(s) for file-watch jobs; Module Name for
process-watch job

Job Folder ID. This is read-only property. It may not be changed using
SET command. It can be retrieved using GET command

Job Folder Name. This is read-only property. It may not be changed
using SET command. It can be retrieved using GET command

Execute Job On Fridays, one of the following: Y, N (yes, no)
Remote Host (Remote Agent Name)

Job ID, This is read-only property. It may not be changed using SET
command. It can be retrieved using GET command with Job Name
parameter.

Ignore Errors, one of the following: Y, N (yes, no)
Initial Timeout before sending keystroke (seconds)
Repeat Interval for Job having Schedule Type T

Job Protection State and Password. Sets or removes job protection
state and password. This is a write-only property. It can be changed
using SET command, but it cannot be retrieved using GET command.
The value in this property must be specified in the following format :
[old password][tab character][new password][tab character][protection
state]

If the job is not protected, the [old password] is ignored, otherwise a
valid password must be specified in order to remove or change job
password or protection state. If the protection exists and the new
protection state is specified as an empty string the protection will be
removed. The protection code must one of the following: F, E, R, an
empty string (F — full protection; E — execute only; R — read only; an
empty string indicates that a job is not protected).

Job Type, one of the following: P, D, S (program, database, script)

Keystroke to send to the launched program.

‘\ Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

Log Job Execution, one of the following: Y, N (yes, no)

E-mail Message Text (e-mail watch job).

WARNING: This is used in email-watch jobs only. Do not confuse this
with Message triggers. The legacy property named Message is
preserved for backward compatibility reasons.

Type of Action that the job should perform after being triggered by a
Message, one of the following D, B, A (do nothing, delete message
before starting job execution, delete message after job executions
completes.

24x7 Scheduler

-74 -

Job Properties in JDL Format

MESSAGE_ID

MODIFY_TERMINAL

MODIFY_TIME

MODIFY_USER

MONDAY
MONTHLY_TYPE

MOVE_DIR

MSG_ACCOUNT

MSG_ACTIONS

MSG_DATABASE

Message ID of the Message to monitor. This is used in Message-watch
job triggers. Do not confuse this with email messages.

Network name of the computer from which the job was last modified.
This is a read-only property. It cannot be changed using SET
command. It can be retrieved using GET command.

% Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

Date and time when the job was modified. This is a read-only property.
It cannot be changed using SET command. It can be retrieved using
GET command.

% Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

Name of the user who last modified the job. This is a read-only
property. It cannot be changed using SET command. It can be
retrieved using GET command.

% Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

Execute Job On Mondays, one of the following: Y, N (yes, no)

Monthly Schedule Type, one of the following: D, T, L (D - by day
number; T - by day name; L - fixed day list)

Name of the destination directory for semaphore file move and rename
operations.

E-mail Account for Notification Action of E-mail Type E-mail (user ID,
profile, or e-mail address).

The actual value may differ for different e-mail interfaces. For the
MAPI interface you should use the name of the MAPI profile you use
when logging on to the e-mail system. For Lotus Notes you should use
the name of the user (or ID) you use when logging on to Lotus Notes.
For SMTP you should use your e-mail address.

Map of Notification Actions and Events in text format. The map is
represented as a comma-separated list of 2-character values where in
every list item the first character represents Notification Event Type and
the second character represents Notification Action Type. The following
characters can be used for the event type: S - job start, F - job finish, E
- job error, N - job file not found, L - job is late. The following
characters

can be used for the action type: E - send email, P - send page, N -
send network popup message, D - execute database commands, F -
create semaphore files, M — send Message; T - send SNMP trap, J -
run job, R - run program, S -run script.

Example map:

SE,FE,EE,FD

This example map represents the following Notification Events and
Events:

1. Send notification email on job start.

2. Send notification email on job finish.

3. Send notification email on job error.

4. Execute database commands on job finish.

Execute Notification Action of Database Type, one of the following: Y,
N (yes, no)

24x7 Scheduler

-75-

Job Properties in JDL Format

MSG_EMAIL

MSG_ERROR

MSG_FILE

MSG_FILE_NAME
MSG_FINISH

MSG_JOB

MSG_JOB_ID
MSG_MESSAGE

MSG_MESSAGE_DATA

MSG_MESSAGE_ ID
MSG_LATE

MSG_NET

MSG_NET_RECIPIENT

MSG_NOTFOUND

MSG_PAGE

MSG_PAGER

MSG_PASSWORD
MSG_PROFILE
MSG_PROGRAM

MSG_PROGRAM_NAME
MSG_PROGRAM_TIMEOUT

Execute Notification Action of E-mail Type, one of the following: Y, N
(ves, no)

Execute Notification Action on Job Execution Error, one of the
following: Y, N (yes, no)

Execute Notification Action of Semaphore File Type, one of the
following: Y, N (yes, no)

File name(s) for Notification Action of Semaphore File Type

Execute Notification Action on Job Finish, one of the following: Y, N
(ves, no)

Execute Notification Action of Run Job Type, one of the following: Y, N
(ves, no)

Job name or job id for Notification Action of Run Job Type

Execute Notification Action of Message Type, one of the following: Y, N
(ves, no)

The data to send in Notification Action of Message Type. The data
format is user defined. The size of the data shouldn't exceed 1 MByte.

Message ID of the Message sent in Notification Action of Message Type

Execute Notification Action on Job Late Start, one of the following: Y,
N (yes, no)

Execute Notification Action of Network Message Type, one of the
following: Y, N (yes, no)

‘\ Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

Message Recipient for Notification Action of Network Message Type

% Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

Execute Notification Action on Job Executable Not Found Error, one of
the following: Y, N (yes, no)

Execute Notification Action of Page Type, one of the following: Y, N
(yes, no)

~= Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

Page Recipient's Pager Number

% Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

E-mail Password for Notification Action of E-mail Type
Database Profile for Notification Action of Database Type

Execute Notification Action of Run Program Type, one of the following:
Y, N (yes, no)

Program name for Notification Action of Run Program Type

Process Timeout (seconds) for Notification Action of Run Program
Type

% Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

24x7 Scheduler

-76 -

Job Properties in JDL Format

MSG_RECIPIENT
MSG_SCRIPT

MSG_SCRIPT_CODE
MSG_SCRIPT_TYPE

MSG_START

MSG_SQL
MSG_TRAP

MQ_PROFILE
MQ_SAVE_DIR

MULTI_INSTANCE_CONTROL

NAME
NUMBER_OF_RETRIES

PASSWORD
POLLING_INTERVAL
PRIORITY

PROFILE
PROTECTION

QUEUE
REBOOT

RETRY_INTERVAL
RENAME_SUFFIX
RETRY_ON_ERROR
RUNAS_DOMAIN

E-mail Recipient for Notification Action of E-mail Type

Execute Notification Action of Run Script Type, one of the following: Y,
N (yes, no)

JavaScript script for Notification Action of Script Type

Type of Script for Notification Action of Script Type, Only JS
(JavaScript) is supported in 24x7 Scheduler Multi-platform Edition for
notification actions.

Execute Notification Action on Job Start, one of the following: Y, N
(ves, no)

SQL script for Notification Action of Database Type

Execute Notification Action of Send SNMP Trap Type, one of the
following: Y, N (yes, no)

MQ broker profile

The output directory in which to save messages downloaded from MQ
broker

Job queuing rule for handling multiple job instances, one of the
following: R — always queue and run, T — terminate already running
and queued job instances if any, and add new instance, S — if there
are already running or queued job instances, skip new instance and do
nothing, E — if there are already running or queued job instances, skip
new instance and raise an error.

Job Name

Maximum Number of Retries Before Job Gets Marked as Failed
(number)

E-mail Password (e-mail watch job)

Polling Interval (minutes)

Job Priority, one of the following: -1 — low, 0 — normal, 1 — high
Database Profile

Job Protection State, one of the following: F, E, R, an empty string (F —
full protection; E — execute only; R — read only; an empty string
indicates that a job is not protected). This is a read-only property. It
cannot be changed using SET command. It can be retrieved using
GET command.

Job Queue

Reboot Computer After Job Finished, one of the following: Y, N (yes,
no)

% Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

Retry Interval (seconds)
Retry Interval (seconds)
The name suffix used in semaphore file names for rename operations.

Domain Name for authentication of jobs to be run using another user
account.

% Note: This property is not used in 24x7 Scheduler Multi-platform

24x7 Scheduler

-77-

Job Properties in JDL Format

RUNAS_PASSWORD

RUNAS_USER

SATURDAY
SAVE_ATTACHMENT

SCHEDULE_TYPE

SCRIPT
SCRIPT_TYPE

SEND_KEYSTROKE

SIZE_CHECK_INTERVAL
SKIP

SKIP_HOLIDAY
SLIDE_HOLIDAY

SQL
START_DATE
START_IN
START_TIME
SUBJECT
SUNDAY
TIME_LIST

THURSDAY
TIMEOUT
TUESDAY
WEDNESDAY
WINDOW

Edition. In that version the RUNAS_USER must contain both the
domain and user names in domain\user format.

Password for authentication of jobs to be run using another user
account.

User Name for authentication of jobs to be run using another user
account.

Execute Job On Saturdays, one of the following: Y, N (yes, no)

Save E-mail Attachments (e-mail watch job), one of the following: Y, N
(ves, no)

Schedule Type, one of the following: O, D, T, M, F, P, A, E, |, L, S
(Time trigger: O —run once, D — repeat daily, T — repeat at specified
time interval, M — repeat monthly; File trigger: F — check semaphore
files; Process trigger: P — check process presence, A — check process
absence; E-mail trigger: E - check e-mail message; User trigger: | —
wake up on "user idle" event, L- wake up on log-off event, S — wake up
on shutdown event)

Job Script

Job Script Type, one of the following: JAL, VBS, JS (Job Automation
Language, Visual Basic Script, JavaScript)

== Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

Send Keystroke, one of the following: Y, N (yes, no)

% Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

File Size Stability Check Interval (used in File-watch jobs)
Skip Late Job, one of the following: Y, N (yes, no)
Skip Job on Holiday, one of the following: Y, N (yes, no)

Slide Job Execution Time on the next non-holiday if it falls on holiday,
one of the following: Y, N (yes, no)

SQL Command(s)

First Start Date

Program Start-up Directory

First Start Time

E-mail Message Subject for (e-mail watch job)

Execute Job On Sundays, one of the following: Y, N (yes, no)

All Day Schedule List of fixed Times, values must be in valid 24-hour
time format. Example: 11:10,12:10,17:10,18:10. This property is
shared with DAY _LIST property for Monthly Schedule.

Execute Job On Thursdays, one of the following: Y, N (yes, no)
Timeout (seconds)

Execute Job On Tuesdays, one of the following: Y, N (yes, no)
Execute Job On Tuesdays, one of the following: Y, N (yes, no)

Window Style, one of the following: N, M, I, H (normal, maximized,

24x7 Scheduler

-78 -

Job Properties in JDL Format

iconic, hidden)

% Note: This property is not used in 24x7 Scheduler Multi-platform
Edition.

24x7 Scheduler

-79-

Additional Java Script Documentation and Examples

Additional Java Script Documentation and Examples

Online JavaScript documentation is available at these sites:

http://developer.netscape.com - Netscape's JavaScript Guide, Reference, and more

http://msdn.microsoft.com/workshop - Microsoft's JScript documentation

In addition, you can find lots of JavaScript discussions, online tutorials, links, code examples, and hundreds of
thousands of useful scripts at many other sites. Some useful sites are

http://javascript-reference.info

http://www.javascripts.com

http://www.javascripter.net

www.regular-expressions.info/javascript.html

www.webreference.com/programming/javascript

24x7 Scheduler -80 -

http://developer.netscape.com/
http://msdn.microsoft.com/workshop
http://javascript-reference.info/
http://www.javascripts.com/
http://www.javascripter.net/
http://www.webreference.com/programming/javascript

	About This Reference
	Conventions Used in This Document
	Abbreviations and Terms
	Trademarks

	JavaScript Syntax
	JavaScript Statements
	break
	comment
	continue
	for
	for…in
	function
	if…else
	return
	try...catch
	var
	while
	with

	Operators
	Operator Precedence

	JavaScript Objects
	Standard Objects
	Array Object
	String Object
	Boolean Object
	Number Object
	Math Object
	Date Object

	Extension Objects
	Process Object
	RunAndWaitInfo Object
	Directory Object
	File Object
	FTP Object
	CompareInfo Object
	Mail Object
	Scheduler Object
	Web Object

	Reserved Words

	JavaScript Automation Extensions
	Process Operations
	run
	runAndWait
	kill
	list

	Directory Operations
	dir
	remoteDir
	getWorkDir
	setWorkDir
	clean
	create
	remove
	move
	copyMerge
	copyReplace
	exists
	size
	zip

	High-Level File Operations
	connectFile
	exists
	remove
	rename
	copy
	move
	dateTime
	save
	size
	checksum
	splitName
	readAll
	transfer
	transferEx
	unzip
	zip
	zipEx

	Low-Level File Operations
	open
	read
	write
	close
	getPos
	setPos

	Database Operations
	connect
	disconnect
	connectFile
	execute
	retrieve
	exportToFile

	FTP Operations
	appendFile
	putFile
	getFile
	resumeFile
	renameFile
	deleteFile
	fileSize
	fileExists
	fileDateTime
	dir
	dirCreate
	dirDelete
	command
	config
	compareDir
	syncDir

	SSH Operations
	config
	runCommand

	MQ Operations
	sendMessage
	receiveAllMessages

	Mail Operations
	send
	sendWithAttachment

	Web Operations
	callService
	getFile
	postData
	getDataWithLogin
	postDataWithLogin
	HTMLEncode
	URLEncode
	stripHTML
	openPage
	stringToJson
	jsonToString
	xmlStringToJson
	xmlFileToJson
	jsonFileToJson
	jsonToXmlString
	stringToJsonArray
	jsonArrayToString
	stringArrayToJsonArray
	jsonArrayToStringArray

	Scheduler Operations
	messageBox
	pause
	logAddMessage
	runJob
	runRemoteJob
	queueJob
	queueRemoteJob
	killJob
	deleteJob
	createJob
	disableJob
	enableJob
	setJobProperty
	getJobProperty
	setJobVariable
	getJobVariable
	findJob
	getJobs
	getFolders
	raiseError
	stdError
	stdOutput
	stdInput
	exitProcess
	performBackup
	removeOldBackups

	Job Properties in JDL Format
	Additional Java Script Documentation and Examples

