

Copyright © SoftTree Technologies, Inc. 1999-2005

All rights reserved

DB Mail™ 2.5

User's Guide

Supported database systems:
Oracle 7.3, 8.0, 8i, 9i, 10g
Microsoft SQL Server 6.5, 7, 2000, 2005
Sybase SQL Server and Sybase Adaptive
Server Enterprise 10.x, 11.x, 12.x
Sybase Adaptive Server Anywhere 6, 7, 8, 9
IBM DB2 UDB 5.x, 6.x, 7.x, 8.x for Unix, Linux and
Windows

Contents

 - 3 -

Table of Contents

Table of Contents .. 3
About this guide... 8

INTENDED AUDIENCE .. 8
CONVENTIONS USED IN THIS DOCUMENT ... 8
ABBREVIATIONS AND PRODUCT REFERENCE TERMS .. 9
TRADEMARKS .. 9

Introduction .. 10
CHAPTER 1, How DB Mail works .. 11

IMPLEMENTATION ..11
Message processing workflow..11
Sample Scenarios ..14

SUPPORTED MESSAGING METHODS AND PROTOCOLS. ...16
Emailing - sending electronic mail ..16
Paging - sending numeric and text messages to pagers and cell phones (SMS)...............................16
Network messaging - sending interruptible network popup messages ...17
System alerts - sending interruptible network alerts ...17
Faxing - sending electronic faxes (paperless) ..17
Voice Messaging- making phone calls and sending voice messages ..18

SUPPORTED DATABASE SYSTEMS AND OPTIONS..18
Database Connectivity Requirements ..19
Messaging features by DBMS ..19

FREQUENTLY ASKED QUESTIONS (FAQ) ...21
CHAPTER 2, Connecting To Your Database... 23

CONNECTION METHODS AND REQUIREMENTS ...23
PREPARING TO USE YOUR DATABASE...24
INSTALLING THE ODBC DRIVER OR NATIVE DATABASE DRIVER ...24
DEFINING THE ODBC DATA SOURCE...24
TROUBLESHOOTING THE DATABASE CONNECTION ...25
DATABASE PROFILES...25

CHAPTER 3, DB Mail database interfaces .. 26
ORACLE ...26
MICROSOFT SQL SERVER...27
SYBASE SQL SERVER, ASE, ASA ..28

Advanced version interface ..28
Limited version interface...29

IBM DB2...32

Contents

 - 4 -

Advanced version interface ..32
Limited version interface...33

CHAPTER 4, Installation and Uninstallation .. 36
FRONT-END INSTALLATION ...36

DB Mail Server Installation ...36
VoMS Installation..37

BACK-END INSTALLATION ...37
Requirements ...37
Oracle...38
Microsoft SQL Server ...40
Sybase SQL Server, ASE, ASA...41
IBM DB2 ...44
How to copy files (SQL Server example)..46
How to FTP files (DB2 example) ..46
Managing User Access to DB Mail features ...47

TESTING...49
UNINSTALLATION...49

CHAPTER 5, Configuring DB Mail ... 51
CONFIGURING DATABASES OPTIONS...51
CONFIGURING EMAIL OPTIONS ...54
CONFIGURING NEW MAPI PROFILE ..56
CONFIGURING PAGER OPTIONS..59
CONFIGURING NETWORK POPUPS AND ALERTS OPTIONS..60
CONFIGURING FAX OPTIONS ..61
CONFIGURING VOICE MESSAGING OPTIONS...63
CONFIGURING QUEUE OPTIONS..64
CONFIGURING ERROR-HANDLING OPTIONS ...66
CONFIGURING SELF-HEALING AND MAINTENANCE OPTIONS ..67
CONFIGURING ARCHIVING OPTIONS ..69
CONFIGURING USER-ACCESS AND SECURITY...70

CHAPTER 6, Sending email messages ... 71
OVERVIEW ...71
ORACLE ...71

SEND_MAIL ...71
ATTACH_FILE..74
ATTACH_DATA..78
CREATE_MAIL_FILE ...80
DELETE_MAIL_FILE..82

MICROSOFT SQL SERVER...83

Contents

 - 5 -

SendMail ..83
AttachFile ...86
AttachData..90
CreateMailFile ..92
DeleteMailFile...93

SYBASE SQL SERVER, ASE, ASA ..94
SendMail ..94
AttachFile ...97
AttachData..101
CreateMailFile ..102
DeleteMailFile...105

IBM DB2...105
SendMail ..105
AttachFile ...109
AttachData..112
CreateMailFile ..114
DeleteMailFile...116

CHAPTER 7, Sending SMS/pager messages.. 118
OVERVIEW ...118
ORACLE ...118

SEND_PAGE..118
MICROSOFT SQL SERVER...119

SendPage...119
SYBASE SQL SERVER, ASE, ASA ..120

SendPage...120
IBM DB2...122

SendPage...122
CHAPTER 8, Sending network popup messages.. 125

OVERVIEW ...125
ORACLE ...125

SEND_POPUP_MESSAGE ...125
MICROSOFT SQL SERVER...127

SendPopupMessage ..127
SYBASE SQL SERVER, ASE, ASA ..127

SendPopupMessage ..127
IBM DB2...128

SendPopupMessage ..128
CHAPTER 9, Sending system alerts.. 130

Contents

 - 6 -

OVERVIEW ...130
ORACLE ...130

SEND_ALERT..130
MICROSOFT SQL SERVER...131

SendAlert..131
SYBASE SQL SERVER, ASE, ASA ..132

SendAlert..132
IBM DB2...133

SendAlert..133
CHAPTER 10, Sending electronic faxes .. 134

OVERVIEW ...134
CREATING AND MODIFYING COVER PAGES ..134
ORACLE ...136

SEND_FAX...136
SEND_FAX_EX..138

MICROSOFT SQL SERVER...141
SendFax ...141
SendFaxEx...143

SYBASE SQL SERVER, ASE, ASA ..147
SendFax ...147
SendFaxEx...149

IBM DB2...153
SendFax ...153
SendFaxEx...155

CHAPTER 11, Sending phone/voice messages .. 160
OVERVIEW ...160
CREATING PRE-RECORDED SOUND MESSAGES AND MESSAGE SEGMENTS..160
CREATING DYNAMICALLY SYNTHESIZED VOICE MESSAGES AND MESSAGE SEGMENTS ..161
ORACLE ...162

SEND_VOICE ..162
MICROSOFT SQL SERVER...166

SendVoice ..166
SYBASE SQL SERVER, ASE, ASA ..172

SendVoice ..172
IBM DB2...176

SendVoice ..176
CHAPTER 12, Helpful Tips and Recommendations .. 181

PERFORMANCE TIPS..181
USAGE TIPS ...181

Contents

 - 7 -

DATABASE PORTABILITY TIPS..182
CHAPTER 13, Troubleshooting and Maintenance... 184

BASIC TROUBLESHOOTING ...184
TROUBLESHOOTING MESSAGE PROCESSING...184
TROUBLESHOOTING DATABASE OPERATIONS ..184
KNOWN ISSUES...184

APPENDIX A, Starting DB Mail on Computer Startup ... 186
APPENDIX B, Running DB Mail as a Windows NT service ... 187
APPENDIX C, Hardware and Software Requirements .. 188
APPENDIX D, Technical Support... 190
APPENDIX E, Licensing... 192

About this guide

 - 8 -

About this guide

This manual describes the features of the DB Mail product, including how to install and use the DB Mail
graphical user interface and send out electronic communications such as Email, Fax, interruptible
Network Popup and Alert messages and Pages using examples. The described features and how-to
instructions apply to all the supported DBMS running on any platform, with sections describing the
specifics of particular DBMS.

Intended audience

This document is for Database Administrators, Database Managers, System Administrators and
Database Owners.

Conventions used in this document

This section describes the style conventions used in this document.

Italic

An italic font is used for filenames, URLs, emphasized text, and the first usage of technical terms.

Monospace

A monospaced font is used for code fragments and data elements.

Bold

A bold font is used for important messages, names of options, names of controls and menu items, and
keys.

User Input

Keys are rendered in bold to stand out from other text. Key combinations that are meant to be typed
simultaneously are rendered with "+" sign between the keys, such as:

Ctrl+F

Keys that are meant to be typed in sequence will be separated with commas, for example:

Alt+S, H

This would mean that the user is expected to type the Alt and S keys simultaneously and then to type
the H key.

Graphical symbols

About this guide

 - 9 -

 This symbol is used to mark useful tips.

This symbol is used to indicate important notes.

Abbreviations and product reference terms

DBMS – Database Management System

Oracle – This refers to all supported Oracle® database servers

SQL Server – This refers to all versions of Microsoft® SQL Server™ database servers.

ASE – This refers to all versions of the Sybase® SQL Server™ and Sybase® Adaptive Server®
Enterprise database servers.

ASA – This refers to all versions of the Sybase® Adaptive Server® Anywhere database servers.

DB2 – This refers to all versions of the IBM® DB2® database servers.

Trademarks

DB Mail, 24x7 Automation Suite, 24x7 Scheduler, DB Tools for Oracle, VoMS are trademarks of
SoftTree Technologies, Inc.

Windows 95, Windows 98, Windows NT, Windows 2000, Windows XP are registered trademarks of
Microsoft Corporation. UNIX is the registered trademark of the X/Open Consortium. Sun, SunOS,
Solaris, SPARC are trademarks or registered trademarks of Sun Microsystems, Inc. Ultrix, Digital UNIX
and DEC are trademarks of Digital Equipment Corporation. HP-UX is a trademark of Hewlett-Packard
Co. IRIX is a trademark of Silicon Graphics, Inc. AIX is a trademark of International Business Machines,
Inc. AT&T is a trademark of American Telephone and Telegraph, Inc.

Microsoft SQL Server, Microsoft Outlook are registered trademarks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation.

Sybase, Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Anywhere Studio are
registered trademarks of Sybase, Inc. or its subsidiaries.

IBM, DB2, UDB are registered trademarks of International Business Machines Corporation. Lotus
Notes is a registered trademark of International Business Machines Corporation.

All other trademarks appearing in this document are trademarks of their respective owners. All rights
reserved.

.

Introduction

 - 10 -

Introduction

E-business is fundamentally changing the way companies operate, going far beyond buying and selling
over the Internet, or e-commerce. E-business enables businesses to leverage the use of technology to
gain an advantage in the marketplace. With this technology, businesses can expand their customer
base, provide faster, more efficient services, and develop more personalized services. In addition, the
overhead associated with implementing business processes can be minimized or reduced by
leveraging e-business technology to streamline interactions with customers, suppliers and business
partners. Most modern e-business solutions are database-driven. Powerful relational databases
systems play a central role in storing e-business data and automating e-business services. However,
most commonly used database systems do not come inbuilt with all the features required for a
successful e-business implementation. A lot of customization, tweaking and programming is required to
fully integrate and automate these systems.

DB Mail provides an easy and efficient method for e-business enabling many database systems. With
minimal effort, It allows you to automate such common e-business functions as sending electronic
messages including e-mail and e-fax messages, pager and mobile phone messages, interruptible
network messages and administrative alerts. And best of all, all these messages can be sent directly
from your databases. Any application capable of connecting to your databases can also use DB Mail
services with minimal programming.

DB Mail is also very easy to install, configure and use. Using DB Mail developers can easily add
messaging functions to their homegrown applications. Database Administrators can automate alert
functions for various database events and monitoring processes. For example, an application can send
an alert whenever the inventory drops below a previously defined critical level, or an office
management application can send an automated message to all users reminding them that it's now
time to submit their attendance timesheets.

CHAPTER 1, How DB Mail works

 - 11 -

CHAPTER 1, How DB Mail works

Implementation

DB Mail is designed as a multi-threaded application that can be configured to simultaneously serve
multiple databases servers. It provides a robust messaging gateway that allows internal and external
database applications to easily create and send various massages including e-mails, e-faxes, network
popup messages, pager and phone messages. DB Mail uses standard database communication
network protocols, which allow it to support any Oracle, DB2, Sybase and Microsoft SQL Server
database systems running on any platform.

DB Mail runs a separate daemon process for every configured database connection. In case one of the
connected databases goes down, it does not stop other daemon processes connected to other
databases. Each daemon process checks periodically for messages written to message pipe in the
connected database and transfers new message to the central message queue. DB Mail also runs
another asynchronous process called Message Queue Processor whose purpose is process messages
in the central message queue. The Message Queue Processor verifies message data and delivers
messages to the recipients. The actual delivery method varies for different message types.

Notes:

In all databases except Oracle, the DB Mail local message queue is table-based. All messages are
written to the DBMAIL.PIPE table from where DB Mail database daemons transfer messages to the
central message queue.

In Oracle databases DB Mail utilizes advanced Oracle messaging features based on the system
DBMS_PIPE package. All messages are written to the virtual message pipe by calling functions
available in DBMS_PIPE package. On the other end of the pipe DB Mail daemons constantly listen for
new messages and wake up when new messages are written. From there, the processing is identical to
the processing in other database systems.

See the next section for description of the complete message processing workflow.

Message processing workflow
Applications that use asynchronous operations (where more than a single operation can execute
simultaneously) often have better availability, reliability, scalability, and usability than applications using
only synchronous operations (where operations execute sequentially). DB Mail is designed with the
goal of supporting asynchronous message processing, which allows database applications to write
messages to a message queue and be immediately freed to serve other user requests.

After messages are written to the message queue, asynchronous DB Mail database daemon processes
pick up queued messages and transfer them to the central message queue where messages are
processed according to their priorities and timing.

Figure 1 shows the components of a message processing workflow diagram.

CHAPTER 1, How DB Mail works

 - 12 -

Figure 1: Message processing workflow

The components topics describe message workflow components.

Database applications

There are essentially 3 types of database applications:

• Internal applications that use stored code run entirely within the space of the database server. An
example of internal application could be a standalone database stored procedure designed to
periodically produce and then email some business report. Such procedures can be scheduled
using one of the available database job scheduling methods.

• External applications have their code stored completely outside of the database. An example of
such application could be a Visual Basic program (or other type of interactive or automatic
program) that is run on a user's workstation. When executing, this program connects to the
database, performs some data manipulations and then disconnects from the database.

• Mixed applications have some portions of their code stored and run in the database space while
other parts of their code are stored and run outside the database. For example a Visual Basic
application described in the previous paragraph could insert new records into an order entry table.
The database portion of this application could be implemented as a database trigger for the order
entry table, which is executed by the database in the event of new records being inserted into the
table. Such trigger can perform some business data validation and email sales managers in case
inventory level falls below a certain level. The same trigger could also create customer invoices
for the inserted orders and automatically fax them to customers.

CHAPTER 1, How DB Mail works

 - 13 -

Database server

Database management systems containing local DB Mail queue and messaging interface procedures.

Local message queue

Database local message queue is used to temporarily store pending messages. In most systems
database queue is implemented as a regular database table. Database applications normally write to
the message queue using DB Mail interface functions and procedures.

Database daemons

Daemon processes run on the DB Mail server computer. Daemon processors monitor database-side
message queues and transfer new messages to the DB Mail server.

Central message queue

Central message queue is the file based message queue where database daemons drop transferred
messages.

Message processors

Message Processors are special processes that run on the DB Mail server computer. They are
responsible for processing queued messages and delivering messages to specified recipients.

Email server

The email server such as Microsoft Exchange or Lotus Notes is used to send electronic mail.
DB Mail server contains internal email client component, which it uses to connect and
communicate to your corporate email server and send email messages. The connection and
communication method differs for different email systems. DB Mail supports 3 most popular
email interfaces: SMTP, Windows MAPI and Lotus Notes. You can use the DB Mail Server
Console to choose which interface you want to use for sending email messages. It is recommended to
use SMTP email interface whenever SMTP server is available. For more information about supported
email interfaces and email options see Configuring Email Options and Emailing - sending electronic
mail topics.

Page server

Page server is used to send SMS messages and alpha-numeric pages to cell phones and pagers using
Simple Network Paging Protocol (SNPP). DB Mail server contains an internal SNPP client component,
which is used to send SMS messages. It implements Simple Network Paging Protocol Version 2 as
specified in RFC 1861. In order to deliver messages SNPP component connects and communicates to
a SNPP server through the Internet. Most telephone service carriers provide SNPP servers to its users
free of charge. Contact your cell phone service carrier to find out which SNPP server you can use. For
more information about paging interface see Configuring SMS and Pager Options and Paging - sending
numeric and text messages to pagers and cell phones topics.

Fax server

Fax server is used to transmit electronic faxes. DB Mail server contains internal file-to-FAX converter

CHAPTER 1, How DB Mail works

 - 14 -

and fax client components, which are used to print attached files to a Microsoft FAX print driver. The
FAX driver converts files to fax-compatible TIFF images. The resulting TIFF images are then sent to a
Windows 2000 or Windows XP computer connected to a fax-modem hooked to a phone line. Because
all Windows 2000 and Windows XP computers feature built-in fax server software, any Windows 2000
or Windows XP computer can be used as a fax server. For more information about configuring fax
interface see Configuring Fax Options and Faxing - sending electronic faxes (paperless) topics.

 Note: Fax transmissions are relatively slow operations. DB Mail provides built-in support for fax
processing scaling out strategy (scaling out is the strategy that increases the capacity of an
infrastructure tier to handle load by adding servers, thereby increasing the aggregate capacity of those
servers). DB Mail server can be configured to work with multiple fax servers concurrently in order to
increase the overall system throughput. As your fax processing volume grows you can add additional
fax servers as needed and configure DB Mail server accordingly.

Voice server

Voice Message Server (VoMS) is used to make phone calls and send sound messages using either
pre-recorded sound files, dynamically synthesized voice messages (using text-to-speech functions) or
combination of both. DB Mail server contains internal VoMS client, which is used to send sound
messages, text-to-speech, and mixed messages to a Windows NT, Windows 2000 or Windows XP
computer connected to a standard voice-modem or Intel Dialogic phone board hooked to a phone line.
The computer must be also running VoMS server software. A limited edition of VoMS is provided with
each DB Mail license. For more information about configuring voice messaging interface see
Configuring Voice Messaging Options and Voice Messaging- making phone calls and sending voice
messages topics.

 Note: Phone calls and voice messaging are relatively slow operations. DB Mail provides built-in
support for voice processing scaling out strategy (scaling out is the strategy that increases the capacity
of an infrastructure tier to handle load by adding servers, thereby increasing the aggregate capacity of
those servers). DB Mail server can be configured to work with multiple voice servers concurrently in
order to increase the overall system throughput. As your call processing volume grows you can add
additional voice servers as needed and configure DB Mail server accordingly.

Direct network messages

DB Mail currently supports two direct network messaging protocols and methods: sending network
popup messages and sending administrative alerts. For more information about these methods and
options see the following topics: Configuring Network Popups and Alerts Options, Network messaging -
sending interruptible network popup messages, System alerts - sending interruptible network alerts
topics.

Sample Scenarios

On-line order processing application

A web-based Order Processing system accepts user orders and inserts every accepted order into an
"order" table stored in the back-end Order Processing database. The INSERT operation fires a
database trigger created for the INSERT operation on the "order" table. The trigger generates invoice
data in a ready for faxing format and writes a message to the local message queue table. The database
returns control back to the web portion of the application which then displays a confirmation message
on the user's screen. This entire processing takes only a fraction of a second, as the application does
not have to wait for the relatively slow fax operation to complete before getting the workflow control
back and displaying the order confirmation.

On the other side of the local DB Mail queue, the asynchronous DB Mail daemon picks up the message

CHAPTER 1, How DB Mail works

 - 15 -

and transfers it to the central message queue where it is validated and processed by the DB Mail
message processor. The DB Mail message processor then delivers the message.

Supply chain warehouse application

A Manufacturing system supplies finished goods to warehouses. Requests for finished goods may be
fulfilled by the Manufacturer by supplying from internal stock or, if the required quantity is not available,
by scheduling a production run. Since there could be a considerable time delay between receiving the
order and informing the warehouse of shipment of goods, an asynchronous processing model is used.
This allows a warehouse to proceed on other business, and allows the Manufacturer to callback to the
Warehouse once the order has been fulfilled. In the event the order has been fulfilled the warehouse
application calls DB Mail stored procedure that in turn writes callback message to the message queue.

As before, on the other side of the local DB Mail queue, the asynchronous DB Mail daemon picks up
the message and transfers it to the central message queue where it is validated and processed by the
DB Mail message processor. The DB Mail message processor then delivers the message.

Database administrative applications

An Oracle administrative application implemented as a database stored procedure runs periodically in
an unattended mode on the database server. This procedure checks critical database metrics and
invokes an administrative alert whenever a metric falls below certain threshold. Oracle's DBMS_JOB
package is used to schedule and run the job. In order to send the alert the stored procedure calls the
SEND_ALERT function from the DB_MAIL package. For critical conditions, the procedure also sends a
pager message to the seniors DBAs by calling the SEND_PAGE function. Both the SEND_ALERT and
SEND_PAGE functions write corresponding messages to the message queue. These messages are
then picked up by DB Mail database daemon and get delivered to system administrators as
interruptible administrative alerts that are displayed on the administrator's workstations and also as
alphanumeric pager messages.

A Microsoft SQL Server application implemented as a database stored procedure runs periodically in
an unattended mode in the MASTER database. This procedure checks all databases residing on the
SQL Server instance for a LOG FULL condition. If such condition has been detected the procedure
calls the SEND_POPUP_MESSAGE stored procedure which in turn writes new message to DB Mail
message queue. This message is then picked up by DB Mail database daemon and gets broadcasted
to all users notifying them that a database become unavailable and user applications accessing that
database may become frozen. The message also tells users that their application will resume normal
processing after database administrators truncate the filled log.

Appointment-reminder application

An automated application running every morning in a healthcare provider office checks in the local
database for appointments scheduled on the same day. For every found appointment it then retrieves
patient's name and phone number. It then calls DB Mail's SEND_VOICE function from the DB_MAIL
package in order to send a pre-recorded message reminding the patient about the appointment time.
The actual appointment time is pronounced using a computer generated voice. This entire processing
takes only a few seconds, as the application does not have to wait for the relatively slow phone dialing
operation to complete before getting the workflow control back.

On the other side of the local DB Mail queue, the asynchronous DB Mail daemon picks up all submitted
messages and transfers them to the central message queue where they are validated and processed
by the DB Mail message processor. The DB Mail message processor then communicates to the
configured VoMS server which delivers the submitted messages to all patients.

CHAPTER 1, How DB Mail works

 - 16 -

Supported messaging methods and protocols.

Emailing - sending electronic mail
DB Mail supports several email protocols and interfaces, including:

• Windows Messaging Application Interface (MAPI)
• Simple Mail Transfer Protocol (SMTP)
• Lotus Notes (HTAPI)

All supported protocols allow sending plain text messages with and without attachments. In addition,
DB Mail's SMTP protocol implementation supports sending rich-text format messages, HTML
messages and XML messages. Such message formats provide greater control over email message
appearance. They can also include in-line images, tables, formats and other graphical elements. The
SMTP interface is also more robust and should be used whenever possible.

SMTP email interface does not require any additional software for sending email messages. You simply
need to configure DB Mail to properly locate and authenticate to your SMTP email server.

MAPI email interface requires email client software such as Microsoft Outlook, Eudora, or Netscape
Messenger installed on the computer running DB Mail Server. You do not need to have the email client
program running in order to send email messages. The email client software just needs to be properly
installed and configured.

Lotus Notes interface is mostly supported for legacy applications. Please use SMTP protocol if you are
running Lotus Notes or Lotus Domino version 5 or later. In order to use Lotus Notes email interface
Lotus Notes client software must be installed on the computer running DB Mail Server. You do not
need to have the Lotus Notes client running in order to send email messages. The client software just
needs to be properly installed and configured.

 Tips:
Up to 255 external files or contents of database BLOB (Binary Large Object) columns can be attached
to a single email message.
A single email message generated and sent via DB Mail can have multiple recipients specified in the
recipients parameters of the SEND_MAIL function. DB Mail will automatically route such
messages to all specified recipients.
A call to the SEND_MAIL function can be inserted in a regular SELECT statement with table
columns or expressions specified for the function arguments. The database engine will invoke the
SEND_MAIL function with different parameters as many times as the number of rows in the result
set. See CHAPTER 6, Sending email messages for examples on using the SEND_MAIL function.
DB Mail SMTP interface supports different message content types such as text/plain,
text/html, text/xml, etc.

Paging - sending numeric and text messages to pagers and cell phones
(SMS)

DB Mail uses Simple Network Paging Protocol (SNPP) to send numeric and alphanumeric SMS
messages through the Internet. DB Mail implements Simple Network Paging Protocol Version 2 as
specified in RFC 1861. In the case of a numeric message the number of digits received by the
recipients is usually limited to 8 to 12. In the case of an alphanumeric message, the number of
characters received depends on the phone service carrier and is usually limited to 250 characters.
Keeping your message short and concise helps to ensure that the recipient gets the most out of your
message.

CHAPTER 1, How DB Mail works

 - 17 -

In order to allow sending numeric and text messages you need to configure DB Mail so it can locate
and authenticate to your SNPP email server. Contact your mobile pager/cell phone carrier or your
local phone company to find out your SNPP server address.

Network messaging - sending interruptible network popup messages
Windows network messaging allows sending arbitrary messages to a registered message alias such
as network computer name or user name. The message appears on the destination computer as an
interruptible popup message box. The user is required to click the OK button displayed on the
message box in order to close the message and continue working. Because the size of the message
box is somewhat limited to the computer screen, brief network messages are usually used to send
important notifications or alerts.

DB Mail uses NetMessage protocol supported on Windows NT/2000/XP/2003 systems. Users running
Windows 95/98/Me systems are unable to receive network messages.

 Important Note: The Messenger service must be running on your computer if you want to
receive network messages. By default Messenger service is installed and turned on all
NT/2000/XP/2003 systems. If the service is not running use Services applet in Windows Control Panel
to change service start type to Automatic and start that service.

System alerts - sending interruptible network alerts
Sending interruptible system alerts is similar to sending network popup messages described in the
previous topic. The only real difference is that network popup messages are sent to named recipients
while administrative alerts are sent to a group of alert subscribers, which usually includes network
administrators and other technical personal. Obviously the second method is more appropriate for
sending administrative messages.

DB Mail alert functions rely on Windows NT LAN Manager protocol and more specifically on Windows
NT Alerter service available on NT/2000/XP/2003 systems. Users running Windows 95/98/Me
systems are unable to receive administrative alerts.

 Important Note: The Alerter service must be running if you want to send administrative alerts
when something goes wrong on the server. The Alerter service also requires the Messenger
service to be running.

Faxing - sending electronic faxes (paperless)
DB Mail supports sending outbound electronic faxes. DB Mail uses Microsoft Windows ® Fax API
available in Windows 2000 and later to create and transmit faxes. Below is the description of this
processing workflow.

You use DB Mail stored procedures in your database to dynamically create text, HTML or XML
documents and save them in the DB Mail queue table or as external files. DB Mail then opens each
document and converts it to a FAX-compatible TIFF image. After this conversion takes place, a cover
page is optionally added and the fax is handed off to the digital modem. The modem dials the recipient
fax telephone number, listens for a fax signal, and sends the fax to the recipient's fax machine. After
the fax has been sent successfully, DB Mail optionally sends a confirmation to the sender via e-mail. If
the fax transmission fails after three or more attempts, a failure notification is optionally sent to the
sender via e-mail. This failure notification indicates whether the fax failed because of a busy signal, no

CHAPTER 1, How DB Mail works

 - 18 -

answer, or the telephone number dialed was not a fax number.

The actual modem and fax transmission can be performed on the computer running DB Mail Server or
any other Windows 2000 or later computer connected to the same network and featuring internal or
external Class II digital fax-modem. Multi-modem digital adapters can be also used for high
performance fax processing. Such multi-modem adapters are capable of sending several fax
messages simultaneously.

 Tip: DB Mail implements advanced message queuing which allows true high-performance
asynchronous database processing, as the performance is not affected by the performance of the fax
processing. Database applications simply call DB Mail interface functions that quickly write messages
to the message queue and immediately free applications making it unnecessary for the applications to
wait for the slower fax processing.

Voice Messaging - making phone calls and sending voice messages
DB Mail supports sending pre-recorded and dynamically generated voice messages using advanced
text-to-speech technologies. For dynamic text-to-speech messages DB Mail uses Microsoft Windows
® Speech API available in Windows 2000 and later to generate dynamic sound files. It then uses the
VoMS (SoftTree Technologies' Voice Message Server™) software to deliver the messages over a
regular phone line as an automated phone call. Below is the description of this processing workflow.

You use DB Mail stored procedures in your database to send voice messages. Messages can contain
references to pre-recorded sound files or simply contain text that you want to say upon successful
phone call. Messages can be also assembled from multiple parts containing both sound files and text
segments. For every sent message DB Mail message queue processor picks up the message
description, voice and text parts and submits them to the VoMS server that can be running on the
same or different computer on your network. The VoMS server in turn converts all text segments to
intermediate sound files and merges all referenced sound files into one single message. The resulting
message is then handed off to the VoMS message processing engine that uses either a local modem
or Intel Dialogic board to dial the recipient's phone number, listen for a human voice answer, and then
speak the message. If the processing fails, for example, there is no modem or phone line available or
and answering human voice has not been detected after three or more attempts, a failure notification
is optionally sent to the message sender via e-mail. This failure notification indicates whether the
phone call failed because of a busy signal, no answer, call hang-up before completion, or the dialed
number is not in service.

The actual phone call can be made from the computer running DB Mail Server or any other Windows
2000 or later computer connected to the same network and running VoMS software. The computer
must have internal or external voice modem or Intel Dialog board.

 Tip: DB Mail implements advanced message queuing which allows true high-performance
asynchronous database processing, as the performance is not affected by the performance of the
voice call processing. Database applications simply call DB Mail interface functions that quickly write
messages to the message queue and immediately free applications making it unnecessary for the
applications to wait for the slower voice call processing.

Supported database systems and options

DB Mail supports a number of widely used database management systems (DBMS). Among them are
Oracle 7, Oracle 8/8i, Oracle 9 database servers, IBM DB2 database server version 6.1 and later,
Microsoft SQL Servers version 6.5 and later, Sybase SQL Server and Adaptive Server Enterprise
(ASE) versions 10.0 and later, Sybase Adaptive Server Anywhere version 6.0 and later.

CHAPTER 1, How DB Mail works

 - 19 -

These DBMS can be installed and running on a variety of systems including but not limited to UNIX,
Linux, Netware, OS2, OS390, OS400, Windows NT/2000/XP. DB Mail can work with all of them
provided a database connection can be made from DB Mail server computer to a database server. A
single DB Mail server can be configured to connect to and process messages from multiple
heterogeneous database systems simultaneously.

Database Connectivity Requirements
DB Mail supports two database connection methods – connections using standard ODBC interface and
connections using native database drivers. DB Mail software is shipped with native database drivers for
Oracle OCI, Sybase CT-Lib and Microsoft SQL Server DB-Lib.

The following table describes supported database interfaces and connection methods.

 DBMS Name

Connection Method

Oracle Microsoft SQL
Server

IBM DB2 Sybase SQL
Server,

Sybase ASE;
Sybase ASA

ODBC X X X X

Native database drivers X1 X2 X3

X1 – Oracle native driver connection requires Oracle client software installed on DB Mail computer. DB
Mail native drivers for Oracle can work with Oracle SQL*Net v2, Net8 and later. Oracle OCI must be
installed as a part of the client.

 Tip: You can verify Oracle client installation using Oracle SQL*Plus utility. As long as you can
connect from SQL*Plus you should be able to connect from DB Mail.

X2 – Microsoft SQL Server native driver connection requires SQL Server client software installed on DB
Mail computer. The client software must include DB-Lib files.

 Tip: You can verify SQL Server client installation using Microsoft ISQL utility or Query
Analyzer (available in SQL Server 7 and later). As long as you can connect from these utilities you
should be able to connect from DB Mail.

X3 - Sybase SQL Server, ASE and ASA native driver connection requires Sybase client software
installed on DB Mail computer. The client software must include CT-Lib files.

 Tip: You can verify Sybase client installation using Sybase ISQL utility. As long as you can
connect from ISQL you should be able to connect from DB Mail.

Messaging features by DBMS
The following table describes DB Mail features supported in different database systems. Note that by
"single email message" we mean a single DB Mail message, which can have one or more recipients.

CHAPTER 1, How DB Mail works

 - 20 -

Oracle

Microsoft SQL
Server 6.5, 7,
2000 and later

IBM DB2 6.1,
6.2, 7.x, 8.x

and later

Sybase SQL
Server,

Sybase ASE
10.x, 11.x,

12.x and later;
Sybase ASA
6.x and later

 DBMS Name
 and Version

Function

7.
3

8.
0 8i

9i
 a

nd
 la

te
r

6.
5

7,
 2

00
0

an
d

la
te

r

W
ith

Ja

va

su
pp

or
t

W
ith

ou
t

Ja
va

su

pp
or

t
W

ith

Ja
va

su

pp
or

t
W

ith
ou

t
Ja

va

su
pp

or
t

Send single email, page, alert
or popup message using
single SQL or procedural
statement

X X X X X X X X X X

Send multiple email, page,
alert or popup messages using
single SQL or procedural
statement (such as SELECT
from table which returns a
multi-row result set)

X X X X X1 X1 X1 X1 X1 X1

Send single email message
with attachments stored inside
database using multiple
procedural statements (at
least 2 procedural statements
required for every message)

 X X X X X X X X

Send multiple email messages
with attachments stored inside
database using single SQL or
procedural statement (such as
SELECT from table which
returns a multi-row result set)

 X X X X2 X3 X

Send single email message
with attachments stored
outside database using
multiple procedural statements
(at least 2 procedural
statements required for every
message)

 X X X X X X

Send multiple email messages
with attachments stored
outside database using single
SQL or procedural statement
(such as SELECT from table
which returns a multi-row
result set)

 X X X X2 X3

Send single fax message
using multiple SQL or
procedural statement

 X X X X X X X

CHAPTER 1, How DB Mail works

 - 21 -

Send multiple fax messages
using single SQL or
procedural statement (such as
SELECT from table which
returns a multi-row result set)

 X X X X2 X3

Send single voice message
(text-to-speech) using multiple
SQL or procedural statement

X X X X X X X X X X

Send multiple voice messages
(text-to-speech) using single
SQL or procedural statement
(such as SELECT from table
which returns a multi-row
result set)

 X X X X2 X3

Send single voice message
(pre-recorded sound files)
using multiple SQL or
procedural statement

X X X X X X X X

Send multiple voice messages
(pre-recorded sound files)
using single SQL or
procedural statement (such as
SELECT from table which
returns a multi-row result set)

 X X X X2 X3

Message Archival X X X X X X X X X X

Message Logging and
Auditing X X X X X X X X X X

X1 - Can be implemented using single INSERT INTO … SELECT statement.

X2 - Can be implemented using user-defined scalar SQL FUNCTION which would call DB Mail stored
procedures passing through function parameters.

X3 - Can be implemented using user-defined scalar SQL FUNCTION which would call DB Mail stored
procedure passing through function parameters. DB2 database must be configured to support user-
defined SQL functions. C/C++ compiler must be installed and configured on the database server.

Frequently Asked Questions (FAQ)

Q: Do I need to have a dedicated server for DB Mail? Can I install it on my database server?

A: No, you do not need a dedicated server. Yes, you can install DB Mail server on the computer
running your database server only if that computer uses Windows 2000 and later as an operation
system. In general you can install DB Mail on any computer in your organization as long as that
computer can access your database servers via a regular TCP/IP network connection.

Q: Do I need an email server or client software installed on the machine running DB Mail? On my
database servers?

A: If you choose to use SMTP email interface the answer is No. If you choose to use MAPI or Lotus

CHAPTER 1, How DB Mail works

 - 22 -

Notes email interface you will need an email client software (such as Microsoft Outlook, Lotus Notes,
Netscape Messenger, Eudora or similar) installed on DB Mail computer.

Q: Do I need any special hardware to run DB Mail?

A: No. DB Mail software runs on any computer hosting Windows 2000, Windows XP and later.

CHAPTER 2, Connecting To Your Database

 - 23 -

CHAPTER 2, Connecting To Your Database

DB Mail can connect to a database using either an ODBC interface or a native database driver. DB
Mail software includes native database drivers for Oracle 7, 8, 9 and 10, Sybase SQL Server and
Adaptive Server Enterprise, and Microsoft SQL Server. DB Mail currently does not include native
drivers for DB2 connections. You must use an ODBC connection to connect to DB2 database systems.
ODBC drivers for DB2 and ASA are available from IBM, Sybase and other vendors.

Connection methods and requirements

Figure 2 illustrates required components for different database connection methods.

Native driver connection ODBC connection

Figure 1: Connection methods diagram

CHAPTER 2, Connecting To Your Database

 - 24 -

Preparing to use your database

Preparing the database ensures that you will be able to access and use your data. The requirements
differ for each database but, in general, preparing a database involves the following steps:

1. If network software is required, make sure it is properly installed and configured at your site
and on the client machine.

2. Make sure the required database server software is properly installed and configured.

3. Make sure the required database client software is properly installed and configured on the
DB Mail computer. (Typically, DB Mail is installed on a Windows NT workstation or server)

 Important Note: You must install the appropriate client software for your database server and
operating system platform before you can connect to the database. See your database vendor for
specific information on where to obtain and how to install the client software.

Installing the ODBC driver or native database driver

To connect DB Mail to your database, you must install the ODBC driver or native database driver that
accesses the database. Select the desired driver or database interface when prompted by the Setup
program.

Defining the ODBC data source

Data that you access through an ODBC driver is referred to as an ODBC data source. An ODBC data
source consists of the data and associated DBMS or file manager, operating system, and (if present)
network software. When you define an ODBC data source, you provide information about the data
source that the driver needs for the connection. Defining an ODBC data source is also referred to as
configuring the data source. You can use the standard Windows ODBC Manager software to create
and modify ODBC data sources. To start the ODBC Manager you will need to do the following:

From Windows Control Panel

1. Click the Windows Start button.

2. Select Settings menu, then select Control Panel. The Control Panel window will appear.

3. Double-click the Administrative Tools icon.

4. Double-click the Data Sources (ODBC) icon.

Completing the ODBC setup dialog box

Define an ODBC data source by completing the ODBC setup dialog box for the ODBC driver you have
previously selected to access the data source. The content and layout of the ODBC setup dialog box

CHAPTER 2, Connecting To Your Database

 - 25 -

will vary for each driver, but most ODBC setup dialog boxes require you to supply the following
information:

• Data source name and location,

• Data source description (optional),

• Other DBMS-specific connection parameters.

After you have created a data source, you can use it in the database profile that you create in the
Database Profile option. Refer to the Database Profiles topic for details.

Troubleshooting the database connection

DB Mail supports two methods for tracing database connections in order to troubleshoot problems:

• Database Trace - The Database Trace tool records the internal commands that DB Mail
executes while communicating with a database. Database Trace writes its output into a text
file named PBTRACE.LOG, which is created in the Windows home directory. You can view
the contents of the log file using any text editor. To enable database tracing, type "TRACE "
(without quotes) in front of the chosen driver name in the Configuring Databases Options.

• ODBC Driver Manager Trace - The ODBC Driver Manager Trace tool records information
about the ODBC API calls made by DB Mail while connected to an ODBC data source. The
ODBC Driver Manager Trace writes its output into a file named SQL.LOG (by default) located
in the Windows home directory or to a log file that you specify. You can view the ODBC
Driver Manager Trace log at any time by using any text editor.

Database Profiles

DB Mail uses database profiles as a way to simplify database connections and to provide naming
methods. A database profile is a named set of parameters stored in the system registry under the DB
Mail key. The profile data contains both the connection parameters for a particular database system
and DB Mail configuration parameters related to that system, for example database server name,
database user name and so on. Database profiles can be configured using the methods described in
the later section titled Configuring Database Options.

CHAPTER 3, DB Mail database interfaces

 - 26 -

CHAPTER 3, DB Mail database interfaces

This section describes the various Database interfaces supported by DB Mail. You will need to be
aware of specific functionality provided by the DBMS of your choice that DB Mail uses.

Oracle

The Oracle messaging interface is implemented as a single PL/SQL package called DB_MAIL that
encapsulates all the messaging calls. This package is located in the SYSTEM schema. DB Mail
supports many functions and options in the more recent Oracle versions.

The DB_MAIL package encapsulates the following functions that can be called from SQL or PL/SQL
code.

Function Name Description

SEND_MAIL Sends Email message, including optional email
attachments

ATTACH_DATA 1 Loads the MAIL_ATTACH table with BLOB values (Binary
Large Objects such as pictures, files and other binary
objects that are stored in database tables)

ATTACH_FILE 1 Loads contents of external files (BFILEs) to the
MAIL_ATTACH table

SEND_FAX 1 Sends faxes

SEND_FAX_EX 1 Sends advanced faxes with complete control over cover
pages including fill-in sender’s contact information,
messages on the cover page as well as requests
automatic fax status notifications by email

SEND_PAGE Sends alpha-numeric page messages (also called SMS
messages) using SNPP protocol to pagers and cell
phones

SEND_POPUP_MESSAGE Sends network pop-up messages to specified logged in
users

SEND_ALERT Sends network pop-up alerts to system administrators and
other personnel whose names are referenced in the Alert
service

SEND_VOICE Makes automated phone calls, performs call progress
detection using intelligent voice recognition engine and
then speaks either pre-recorded or dynamically
synthesized sound messages

CREATE_MAIL_FILE 1 Auxiliary procedure to write text, HTML and other flat text
files on the server and then fax or email them as
attachments. Files can be created only in the directory
specified in the MAILSTORE directory object.

CHAPTER 3, DB Mail database interfaces

 - 27 -

DELETE_MAIL_FILE 1 Deletes files created by the CREATE_MAIL_FILE
procedure

1 -- This function is not available in Oracle 7.3

For a complete description of each procedure and code examples see the following chapters:

CHAPTER 6, Sending email messages

CHAPTER 7, Sending SMS/pager messages

CHAPTER 8, Sending network popup messages

CHAPTER 9, Sending system alerts

CHAPTER 10, Sending electronic faxes

CHAPTER 11, Sending phone/voice messages

Microsoft SQL Server

The SQL Server messaging interface is implemented as a set of Transact-SQL and extended stored
procedures. These procedures are located in the DBMAIL schema in the MASTER database. The
following procedures can be called from SQL or Transact-SQL code or from other database
applications.

Procedure Name Description

SendMail Sends Email message, including optional email
attachments

AttachData Loads the ATTACH table with BLOB values (Binary Large
Objects such as pictures, files and other binary objects
that are stored in database tables)

AttachFile Loads contents of external files to the ATTACH table

SendFax Sends faxes

SendFaxEx Sends advanced faxes with complete control over cover
pages including fill-in sender’s contact information,
messages on the cover page as well as requests
automatic fax status notifications by email

SendPage Sends alpha-numeric page messages (also called SMS
messages) using SNPP protocol to pagers and cell
phones

SendPopupMessage Sends network pop-up messages to specified logged in
users

SendAlert Sends network pop-up alerts to system administrators and
other personnel whose names are referenced in the Alert
service

SendVoice Makes automated phone calls, performs call progress
detection using intelligent voice recognition engine and

CHAPTER 3, DB Mail database interfaces

 - 28 -

then speaks either pre-recorded or dynamically
synthesized sound messages

CreateMailFile Auxiliary procedure to write text, HTML and other flat text
files on the server and then fax or email them as
attachments

DeleteMailFile Deletes files created by the CreateMailFile procedure

For complete description of each procedure and code examples see the following chapters:

CHAPTER 6, Sending email messages

CHAPTER 7, Sending SMS/pager messages

CHAPTER 8, Sending network popup messages

CHAPTER 9, Sending system alerts

CHAPTER 10, Sending electronic faxes

CHAPTER 11, Sending phone/voice messages

Sybase SQL Server, ASE, ASA

Two different versions of DB Mail database interface can be installed in Sybase databases:

• Advanced version – this version can be installed if your Sybase database supports Java
stored procedures.

• Limited version – this version can be installed on any Sybase database as it does not
require Java support in the database. However, DB Mail will be limited to sending simple
message types only and will not support email messages with attachments as well as
electronic faxes.

Advanced version interface
This messaging interface is implemented as a set of Java stored procedures. These procedures are
located in the DBMAIL schema in the SYBSYSTEMPROCS database. The following procedures can
be called from SQL or Transact-SQL code or from other database applications.

Procedure Name Description

SendMail Sends Email message, including optional email
attachments

AttachData Loads the ATTACH table with BLOB values (Binary Large
Objects such as pictures, files and other binary objects
that are stored in database tables)

AttachFile Merges text file pieces previously inserted into the
MAIL_FILE table into a single text BLOB and then loads
the resulting BLOB into the ATTACH table as a named file.

CHAPTER 3, DB Mail database interfaces

 - 29 -

SendFax Sends faxes

SendFaxEx Sends advanced faxes with complete control over cover
pages including fill-in sender’s contact information,
messages on the cover page as well as request automatic
fax status notifications by email

SendPage Sends alpha-numeric page messages (also called SMS
messages) using SNPP protocol to pagers and cell
phones

SendPopupMessage Sends network pop-up messages to specified logged in
users

SendAlert Sends network pop-up alerts to system administrators and
other personnel whose names are referenced in the Alert
service

SendVoice Makes automated phone calls, performs call progress
detection using intelligent voice recognition engine and
then speaks either pre-recorded or dynamically
synthesized sound messages

CreateMailFile Auxiliary procedure to write text, HTML and other flat text
files on the server and then fax or email them as
attachments. Because Sybase does not currently support
accessing external files from Java stored procedures, the
contents of the files is saved in 255 character long pieces
in the MAIL_FILE table. Use AttachFile procedure to
merge these pieces together and load them as a single
BLOB into the ATTACH table.

DeleteMailFile Deletes file from the MAIL_FILE table.

For complete description of each procedure and code examples see the following chapters:

CHAPTER 6, Sending email messages

CHAPTER 7, Sending SMS/pager messages

CHAPTER 8, Sending network popup messages

CHAPTER 9, Sending system alerts

CHAPTER 10, Sending electronic faxes

CHAPTER 11, Sending phone/voice messages

Limited version interface
This messaging interface is limited to direct INSERTs into DBMAIL.PIPE table located in
SYBSYSTEMPROCS database. For different message types you should use different columns of this
table.

Creating email messages

The following columns in the DBMAIL.PIPE table can be used to create email messages.

CHAPTER 3, DB Mail database interfaces

 - 30 -

Column Name Description

MESSAGE_TYPE A VARCHAR column whose value must be EMAIL for
email message types.

RECIPIENTS A VARCHAR column whose value is the email recipient
address to send the message to. If you want to send the
same message to multiple recipients you can use comma-
separated list of email recipient addresses instead of
sending multiple messages.

SUBJECT A VARCHAR column whose value is the email subject.

MESSAGE A VARCHAR column whose value is the actual email
message. The format of the text in the message should
match the value inserted into CONTENT_TYPE column.

REPLY_TO A VARCHAR column whose value is the email address of
the sender.

CONTENT_TYPE A VARCHAR column whose value describes the format of
the email message. You can use standard Internet
formats. For example, for plain text email messages
specify text/plain, for rich text messages specify
text/rtf, for HTML email messages specify
text/html, for XML email messages specify text/xml.

Example:

INSERT INTO dbmail.pipe (message_type, recipients, subject, message,
reply_to, content_type)
VALUES ('EMAIL', 'customer@custcompany.com', 'Test message', 'Test message,
please ignore.', 'me@mycompany.com', 'text/plain');

Creating alphanumeric pager and phone messages

The following columns in the DBMAIL.PIPE table can be used to create page messages.

Column Name Description

MESSAGE_TYPE A VARCHAR column whose value must be PAGE for page
message types.

RECIPIENTS A VARCHAR column whose value is the pager or cell
phone number to send the message to. If you want to
send the same message to multiple recipients you can use
comma-separated list of numbers instead of sending
multiple messages.

The number format must conform to the standard used by
your SNPP service provider.

MESSAGE A VARCHAR column whose value is the actual message.

CHAPTER 3, DB Mail database interfaces

 - 31 -

Example:

INSERT INTO dbmail.pipe (message_type, recipient, message)
VALUES ('PAGE', '1234567890', 'Test message, please ignore.');

Creating administrative alerts

The following columns in the DBMAIL.PIPE table can be used to create administrative alerts.

Column Name Description

MESSAGE_TYPE A VARCHAR column whose value must be ALERT for
alert message types.

MESSAGE A VARCHAR column whose value is the actual message.

Example:

INSERT INTO dbmail.pipe (message_type, message)
VALUES ('ALERT', 'Test system alert message, please ignore.');

Creating network popup messages

The following columns in the DBMAIL.PIPE table can be used to create popup messages.

Column Name Description

MESSAGE_TYPE A VARCHAR column whose value must be NET for
network popup message types.

RECIPIENTS A VARCHAR column whose value is the network
username, network computer name, or network
messaging name to send the message to. If you want to
send the same message to multiple recipients you can use
comma-separated list of recipient names instead of
sending multiple messages.

If you do not specify RECIPIENTS value or insert NULL
value into column, DB Mail will broadcast the message to
all the names in your domain or workgroup.

MESSAGE A VARCHAR column whose value is the actual message.

Example:

INSERT INTO dbmail.pipe (message_type, recipient, message)
VALUES ('NET', 'MY COMPUTER NAME' 'Test message, please ignore.');

CHAPTER 3, DB Mail database interfaces

 - 32 -

IBM DB2

Two different versions of DB Mail database interface can be installed in DB2 databases:

• Advanced version – this version can be installed if your DB2 database supports Java
stored procedures.

• Limited version – this version can be installed on any DB2 database as it does not
require Java support in the database. However, DB Mail will be limited to sending simple
message types only and will not support email messages with attachments as well as
electronic faxes.

Advanced version interface
This messaging interface is implemented as a set of Java stored procedures. These procedures are
located in the DBMAIL schema. The following procedures can be called from SQL and compound SQL
statements as well as from other database applications that are capable of calling DB2 stored
procedures.

Procedure Name Description

SendMail Sends Email message, including optional email
attachments

AttachData Loads the ATTACH table with BLOB values (Binary Large
Objects such as pictures, files and other binary objects
that are stored in database tables)

AttachFile Loads contents of external files to the ATTACH table

SendFax Sends faxes

SendFaxEx Sends advanced faxes with complete control over cover
pages including fill-in sender’s contact information,
messages on the cover page as well as request automatic
fax status notifications by email

SendPage Sends alpha-numeric page messages (also called SMS
messages) using SNPP protocol to pagers and cell
phones

SendPopupMessage Sends network pop-up messages to specified logged in
users

SendAlert Sends network pop-up alerts to system administrators and
other personnel whose names are referenced in the Alert
service

SendVoice Makes automated phone calls, performs call progress
detection using intelligent voice recognition engine and
then speaks either pre-recorded or dynamically
synthesized sound messages

CreateMailFile Auxiliary procedure to write text, HTML and other flat text
files on the server and then fax or email them as
attachments

CHAPTER 3, DB Mail database interfaces

 - 33 -

DeleteMailFile Deletes files created by the CreateMailFile procedure

For complete description of each procedure and code examples see the following chapters:

CHAPTER 6, Sending email messages

CHAPTER 7, Sending SMS/pager messages

CHAPTER 8, Sending network popup messages

CHAPTER 9, Sending system alerts

CHAPTER 10, Sending electronic faxes

CHAPTER 11, Sending phone/voice messages

Limited version interface
This messaging interface is limited to direct INSERTs into DBMAIL.PIPE table. For different message
types you should use different columns of this table.

Creating email messages

The following columns in the DBMAIL.PIPE table can be used to create email messages.

Column Name Description

MESSAGE_TYPE A VARCHAR column whose value must be EMAIL for
email message types.

RECIPIENTS A VARCHAR column whose value is the email recipient
address to send the message to. If you want to send the
same message to multiple recipients you can use comma-
separated list of email recipient addresses instead of
sending multiple messages.

SUBJECT A VARCHAR column whose value is the email subject.

MESSAGE A VARCHAR column whose value is the actual email
message. The format of the text in the message should
match the value inserted into CONTENT_TYPE column.

REPLY_TO A VARCHAR column whose value is the email address of
the sender.

CONTENT_TYPE A VARCHAR column whose value describes format of the
email message. You can use standard Internet formats.
For example, for plain text email messages specify
text/plain, reach text messages specify text/rtf, for
HTML email messages specify text/html, for XML email
messages specify text/xml.

Example:

INSERT INTO dbmail.pipe (message_type, recipients, subject, message,
reply_to, content_type)

CHAPTER 3, DB Mail database interfaces

 - 34 -

VALUES ('EMAIL', 'customer@custcompany.com', 'Test message', 'Test message,
please ignore.', 'me@mycompany.com', 'text/plain');

Creating alphanumeric pager and phone messages

The following columns in the DBMAIL.PIPE table can be used to create page messages.

Column Name Description

MESSAGE_TYPE A VARCHAR column whose value must be PAGE for page
message types.

RECIPIENTS A VARCHAR column whose value is the pager or cell
phone number to send the message to. If you want to
send the same message to multiple recipients you can use
comma-separated list of numbers instead of sending
multiple messages.

The number format must conform to the standard used by
your SNPP service provider.

MESSAGE A VARCHAR column whose value is the actual message.

Example:

INSERT INTO dbmail.pipe (message_type, recipient, message)
VALUES ('PAGE', '1234567890', 'Test message, please ignore.');

Creating administrative alerts

The following columns in the DBMAIL.PIPE table can be used to create administrative alerts.

Column Name Description

MESSAGE_TYPE A VARCHAR column whose value must be ALERT for
alert message types.

MESSAGE A VARCHAR column whose value is the actual message.

Example:

INSERT INTO dbmail.pipe (message_type, message)
VALUES ('ALERT', 'Test system alert message, please ignore.');

Creating network popup messages

The following columns in the DBMAIL.PIPE table can be used to create popup messages.

Column Name Description

MESSAGE_TYPE A VARCHAR column whose value must be NET for
network popup message types.

CHAPTER 3, DB Mail database interfaces

 - 35 -

RECIPIENTS A VARCHAR column whose value is the network
username, network computer name, or network
messaging name to send the message to. If you want to
send the same message to multiple recipients you can use
comma-separated list of recipient names instead of
sending multiple messages.

If you do not specify RECIPIENTS value or insert NULL
value into column, DB Mail will broadcast the message to
all the names in your domain or workgroup.

MESSAGE A VARCHAR column whose value is the actual message.

Example:

INSERT INTO dbmail.pipe (message_type, recipient, message)
VALUES ('NET', 'MY COMPUTER NAME' 'Test message, please ignore.');

CHAPTER 4, Installation and Uninstallation

 - 36 -

CHAPTER 4, Installation and Uninstallation

This section describes the installation and de-installation procedures. Once the software installation is
complete, DB Mail objects should be installed on the Database side. This is explained in later sections.

Installing DB Mail is a relatively simple task, provided the system requirements are met. We will look at
some of the details of performing the installation in this chapter.

Front-end Installation

DB Mail Server installation
The DB Mail Setup program provides a straightforward interface for DB Mail installation. When
prompted what you want to install choose DB Mail Server option and then simply follow the Setup
Wizard that will guide you through the entire installation process. When installing on a Windows NT
environment, you should be logged on using an account that is a member of the local Administrators
group before you install the program.

Please note the following points with regard to the installation:

• Keep the License Key supplied by Soft Tree Technologies handy. This will need to be entered
during the installation.

• If you are installing DB Mail on a trial basis, leave the DB Mail License Key field blank when
prompted. This will provide you a temporary license for a 30-day trial period. The License can
then be purchased from Soft Tree Technologies and entered in using the ‘Help -> License Key
Code Maintenance’ menu item later. If the Trial license has expired by then, you can also
register using the ‘Register’ button on the pop-up screen after invoking DB Mail Server
Console.

• By default, the Setup will install the DB Mail Server shortcut in the Startup folder. In case you
are using NT 4.0 and above, you may always skip this step and install DB Mail as a Service.
Refer to the APPENDIX B, Running DB Mail as a Windows NT service later in the manual.

• If you have a previous version of DB Mail installed on your system (version 2.0 or 2.1), the
installation of DB Mail 2.5 will upgrade your previous installation. Run the Database Setup
Wizard after the installation to install/upgrade DB Mail database side objects.

• If you have DB Mail version 1.0 installed on your system, installation of DB Mail 2.5 will NOT
override your previous installation. It is advisable to de-install the previous version using the
de-installation procedure for the previous version. You should also de-install the DB Mail
Database side objects from databases where it was previously installed.

• At the end of the software installation to disk, you will be prompted to start the DB Mail
database setup. You will need to be prepared with the appropriate Database administrator
account and password as well as the connection details for the required Database(s). The
Database setup will need to be performed on every database that you intend to send Email
messages from using DB Mail. If you chose not to install the Database Setup at this time, or
you need to install the Database side objects on other databases, you can invoke the
‘Database Setup’ program from the DB Mail 2 program group at a later time.

• If you are going to use the ODBC interface, configure desired data sources using the ODBC
Administrator found in the Windows Control Panel. See the following sections for details.

CHAPTER 4, Installation and Uninstallation

 - 37 -

 Important notes:
During software installation of DB Mail, you will be asked to install the database side objects. If you
choose not to install these objects at that time, you may do so later using DB Mail Database Setup
utility. For more information on database side installation refer to the Back-end Installation topic.

VoMS installation
VoMS software installation is only required if you are planning to use DB Mail Voice Messaging
functions. In that case you must install VoMS server software on any Windows 98 or better computer
on your network featuring a sound board and either internal or external voice modem or an Intel
Dialogic phone board. This could be the same computer that is running the DB Mail Server or any other
computer on your network.

The DB Mail Setup program provides a straightforward interface for VoMS installation. When prompted
what you want to install choose Voice Messaging Services option and then simply follow the Setup
Wizard that will guide you through the entire installation process. When installing on a Windows NT
environment, you should be logged on using an account that is a member of the local Administrators
group before you install the program.

Please note the following points with regard to the installation:

• Keep the License Key supplied by Soft Tree Technologies handy. This will need to be entered
during the installation.

• If you are installing VoMS on a trial basis, leave the Voice Message Server License Key field
blank when prompted. This will provide you a temporary license for a 30-day trial period. The
License can then be purchased from Soft Tree Technologies and entered in later.

• By default, the Setup will place VoMS server shortcut into the Startup folder.

• At the end of the software installation to disk, you will be prompted to start the VoMS server
and use the VoMS Administrator utility to configure modem connection settings and other
voice messaging properties. If you chose not to configure Voice Messaging Services at this
time, you can invoke the ‘Administrative Console’ shortcut from the DB Mail 2 \ Voice
Message Server program group at a later time.

 Important notes:
By default VoMS server is installed without a password meaning that anyone on your network who
has VoMS Administrator utility installed cannot connect to the VoMS server. It is highly
recommended that immediately after the installation you use the VoMS Administrator utility to set a
password for all administrative connections. If you choose to set a password, click the Password
button available on the Users screen. Enter new password and press the OK button to save it. The
password will be stored in encrypted format in the system registry and all consecutive connections
to the VoMS server will require the same password entered on the VoMS Administrator connection
dialog.

Back-end Installation

Requirements
DB Mail requires DB Mail database objects to be created in every database from where you want to
send email, fax and other electronic messages. To install and uninstall these objects as well as
manage user access to various DB Mail features you can use DB Mail Database Setup Wizard. The
wizard can be started using any of the following methods:

CHAPTER 4, Installation and Uninstallation

 - 38 -

• Run DB Mail installation Program and choose Database Setup option.
or

• From DB Mail Server Console menu select File/Install Database Objects
or

• From DOS command prompt, change current directory to DB Mail home directory and then
run DB_MAIL /SETUP command.

This will start DB Mail Database Setup Wizard, which will guide you through the installation process.

The following sections describe what needs to be installed on different database systems.

Oracle
The main objects include the DB_MAIL package, the MAILSTORE directory object (for Oracle 8i and
above) as well as a table and a sequence for supporting attachments to email messages and electronic
faxes. These objects need to be installed in all the databases, regardless of version, that users want to
send mail from.

DB_MAIL is implemented as the one single PL/SQL package that encapsulates all of the messaging
calls. This package is installed in the SYSTEM schema and a public synonym with the same name is
created so that users can call DB_MAIL package functions without directly referring to the SYSTEM
schema.

To install DB Mail database objects in an Oracle database perform the following steps:

1. Start DB Mail Database Setup utility.

2. Choose Oracle 7.3, 8.x, 9.x, and later option and then click the Next button.

3. Enter valid password for the SYS user into the Password field.

4. Select valid Oracle TNS name from the Host String drop-down list. If you cannot find an existing
name in the list simply type in a valid TNS entry name then click the Next button. When installing

CHAPTER 4, Installation and Uninstallation

 - 39 -

DB Mail on a local Oracle instance you can leave the Host String field blank.

5. (Oracle8i and later only) Type in name of an existing directory where DB Mail can create
temporary files for email attachments and electronic faxes. If you Oracle database is already
configured for external file access you can enter name of one of the directories listed in
UTL_FILE_DIR initialization parameter. If you do not have UTL_FILE_DIR parameter configured
yet you will need to add that parameter to your Oracle parameters file.

 Important notes:
After you modify your Oracle parameter file, you will need to stop and then restart your database
instance in order for the changes to take effect. Failure to do so will prevent DB Mail from
supporting email attachments and electronic faxes.

6. Click the Finish button. DB Mail Database Setup will run installation scripts compatible with your
Oracle database version.

Access Privileges

Because DB_MAIL package may call functions in DBMS_PIPE, UTL_FILE and
DBMS_BACKUP_RESTORE (Oracle 9i and later only) packages, the SYSTEM user needs EXECUTE
privilege on these system packages.

A user (other than SYSTEM) who needs to send messages from within the database also needs
access to the DB_MAIL package. Unless you want to restrict the privilege of sending messages from
within the database to specific individuals, you should grant PUBLIC access to EXECUTE the
DB_MAIL package and SELECT/INSERT/UPDATE/DELETE privilege to PUBLIC on the
MAIL_ATTACH table.

CHAPTER 4, Installation and Uninstallation

 - 40 -

Microsoft SQL Server
DB Mail server side objects are installed in the master database within the DBMAIL schema. In order
to create this schema, the DB Mail Database Setup utility creates the DBMAIL login and database user.
In that schema the setup creates three database tables: PIPE, ATTACH, ATTACH_SEQ tables and
also a set of stored procedures for sending emails, faxes, page and text messages, administrative
alerts, and network popup messages. The setup will also install the xp_dbmail.dll on your SQL server
computer that is required for DB Mail extended stored procedures.

These objects need to be installed in all Microsoft SQL Servers, regardless of version, that users want
to send mail from.

To install DB Mail database objects in Microsoft SQL Server, perform the following steps:

1. Start DB Mail Database Setup utility.

2. Choose Microsoft SQL Server 6.5, 7, 2000, and later option and then click the Next button.

3. Enter valid password for the SA user into the Password field.

4. Select valid server name from the Server drop-down list. If you cannot find an existing name in the
list simply type in the name then click the Next button. When installing DB Mail on a local SQL
Server instance you can leave the Server field blank or type in (local) as a server name.

5. Use Copy Files or FTP Files option to copy xp_dbmail.dll file to BINN directory on your SQL
Server computer.

For instructions on how to copy files see How to copy files (SQL Server example) topic.

For instructions on how to FTP files see How to FTP files (DB2 example) topic.

6. After you are done with copying files click the Next button again and then click the Finish button.
DB Mail Database Setup will run installation scripts compatible with your SQL Server version.

Use this for
regular file

copy

Use this for
FTP file
transfer

 Files
to copy

Place where
 files can
be found

Place where
files must
be copied

CHAPTER 4, Installation and Uninstallation

 - 41 -

Sybase SQL Server, ASE, ASA
DB Mail server side objects are installed in the sybsystemprocs database within the DBMAIL schema.
In order to create this schema the DB Mail Database Setup utility creates the DBMAIL login and
database user. In that schema the setup creates three database tables: PIPE, ATTACH,
ATTACH_SEQ tables and also a set of stored procedures for sending emails, faxes, page and text
messages, administrative alerts, and network popup messages. The setup will also install the
xp_dbmail.dll on your SQL server computer that is required for DB Mail extended stored procedures.

These objects need to be installed in all Sybase SQL Servers, regardless of version, that users want to
send mail from.

To install DB Mail database objects in Sybase SQL Server, perform the following steps:

1. Start DB Mail Database Setup utility.

2. Choose Sybase SQL Server, Sybase ASE 10.x, 11.x, 12.x, and later option and then click the
Next button.

3. Enter valid password for the SA user into the Password field.

4. Select valid server name from the Server drop-down list. If you cannot find an existing name in the
list simply type in the name then click the Next button. When installing DB Mail on a local SQL
Server instance you can leave the Server field blank or type in (local) as a server name.

5. Select which version of DB Mail you want to install. If your Sybase server does not support Java
you should install the limited version of DB Mail that does not support email attachments and fax
procedures.

If your Sybase server supports Java but Java is not currently enabled you need to execute
sp_configure "enable java", 1 command using ISQL or any SQL editor. Then shut down and
restart the server. You can also use Sybase Central console to change server configuration
parameters.

 Important Notes:

• By default, Sybase Adaptive Server Enterprise is not enabled for Java. You cannot
install Java classes or perform any Java operations until the server is enabled for
Java.

• You can increase or decrease the amount of memory available for Java in Adaptive
Server and optimize performance using sp_configure system stored procedure. Java
configuration parameters are described in the Sybase System Administration Guide.

If DB Mail Database fails to load DBMAIL.JAR file into your Sybase data you can load this file
manually using Sybase Central Java Edition as shown below:

1. In a Sybase Central Java Edition installation, connect to the database server and
then select and expand sybsystemprocs database.

2. Select Java Objects folder.

3. Double-click Add JAR icon.

CHAPTER 4, Installation and Uninstallation

 - 42 -

4. The Add JAR – Install Java class dialog will appear. If default settings in the dialog
look ok click the Next button, otherwise correct setting and then click the Next
button.

5. Use the browse button to locate the DBMail.jar file. By default this file this file can
be found in C:\Program Files\DB Mail 2\Sybase directory. Click the Next

4

CHAPTER 4, Installation and Uninstallation

 - 43 -

button again.

6. Verify selected options and click the Finish button.

7. If the JAR file loads correctly you should be able to see DB Mail Java classes loaded
into the database as on the following screen shot.

6

5

CHAPTER 4, Installation and Uninstallation

 - 44 -

IBM DB2
DB Mail server side objects are installed in every DB2 database from where users will be sending mail.
In order to install back-end objects the DB Mail Database Setup utility creates the DBMAIL schema. In
that schema the setup creates three database tables: PIPE, ATTACH, ATTACH_SEQ tables and also a
set of Java stored procedures for sending emails, faxes, page and text messages, administrative alerts,
and network popup messages.

These objects need to be installed in all DB2 databases, regardless of version, that users want to send
mail from.

To install DB Mail database objects in DB2 database perform the following steps:

1. Start DB Mail Database Setup utility.

2. Choose IBM DB2 6.1, 6.2, 7.x, 8.x and later option and then click the Next button.

3. Enter valid user id and password for a database administrator account into the User and the
Password fields.

4. Select valid ODBC Profile name from the Server drop-down list. If you cannot find an existing
name in the list simply type in the name then click the Next button.

5. Use Copy Files or FTP Files option to copy DB Mail Java classes to
DB2/SQLLIB/function/DBMAIL subdirectory on your DB2 computer.

CHAPTER 4, Installation and Uninstallation

 - 45 -

For instructions on how to copy files see How to copy files (SQL Server example) topic.

For instructions on how to FTP files see How to FTP files (DB2 example) topic.

6. After you are done with copying files click the Next button again and then click the Finish button.
DB Mail Database Setup will run installation scripts compatible with your DB2 database version.

Use this for
regular file

copy

Use this
for FTP file

transfer

Files
to copy

Place where
files can
be found

Place where
files must
be copied

CHAPTER 4, Installation and Uninstallation

 - 46 -

How to copy files (SQL Server example)
If you can access SQL Server home directory using a network share click the Copy Files button. The
standard Windows Browse for Folder dialog will
appear.

If you can access SQL Server computer via
network browsing, expand the special "My Network
Places" folder (On Windows 95/98/NT 4 this folder
is called "Network Neighborhood"). Within that
folder, open "Entire Network" and "Microsoft
Windows Network" as needed. You should see a
list of workgroups and network domains; open the
domain or workgroup your SQL Server belongs to.
Locate your SQL Server computer and then within
that computer locate SQL Server installation
directory. Inside that directory double-click on the
BINN folder. DB Mail will copy required files over
the network to the BINN directory.

If you cannot access SQL Server computer via
network browsing you still should be able to
access it via a mapped network drive. To map a
remote SQL Server drive as a network drive use
the "Map Network Drive" command, which you can
access by right-clicking on the "My Computer" icon
displayed on the Desktop. Type in the Windows-
style share name of your directory, for example:

\\myserver\system

At this point, you must authenticate yourself before you are granted access. Enter appropriate user
name and password for accessing the remote computer and then click the Enter key. Please note that
you may need to use user name and password
that are different from your database user id and
password. Please contact your network
administrator if you do not have your password or
need additional help with this procedure.

After you mapped remote drive you can copy files
to it just as you would copy files to your local
drive.

How to FTP files (DB2 example)
If you cannot use a mapped drive but have FTP
server running on your SQL Server computer you
can use the FTP Files option. The setup utility
features built-in mini FTP browser and FTP file
copy utility. To start the FTP browser click FTP
Files button and then enter FTP server
connection parameters and press Connect
button. Please note that you may need to use
user name and password that are different from
your database user id and password. Please
contact your network administrator if you do not
have your password or need additional help with
this procedure.

Expand this
folder to start
network browser

Fill in FTP
login info
then click
Connect
button

Folder to be
located

using FTP
browser

CHAPTER 4, Installation and Uninstallation

 - 47 -

After the setup connects to your FTP server locate and expand DB2 home directory. Within that
directory locate SQLLIB/function subdirectory. Click the OK button. DB Mail will create the DBMAIL
subdirectory and then FTP all required files to the new DBMAIL subdirectory.

Managing user access to DB Mail features
Finally, a word about accesses privileges. The DB Mail objects are installed using database
administrator's privileges. A user (other than a database administrator) who needs to send messages
from within the database needs access to the DB Mail objects. Unless you want to restrict the privilege
of sending messages from within the Database to specific individuals, you should grant PUBLIC access
to DB Mail objects. To manage user access privileges use DB Mail Database Setup utility described in
the By default VoMS server is installed without a password meaning that anyone on your network who
has VoMS Administrator utility installed cannot connect to the VoMS server. It is highly recommended
that immediately after the installation you use the VoMS Administrator utility to set a password for all
administrative connections. If you choose to set a password, click the Password button available on
the Users screen. Enter new password and press the OK button to save it. The password will be stored
in encrypted format in the system registry and all consecutive connections to the VoMS server will
require the same password entered on the VoMS Administrator connection dialog.

Back-end Installation topic.

1. When prompted, choose Manage user access to DB Mail features option and then click the Next
button.

2. Complete database connection parameters and then click the Next button again.

1

CHAPTER 4, Installation and Uninstallation

 - 48 -

3. Enter database user names into the Name field one by one each time pressing the Grant button. If
you made a mistake and would like to remove a user name that was entered by mistake, type that
name in the Name field and then press the Revoke button.

4. In the Access Privileges table check/uncheck access options as appropriate.

5. Press the Apply to apply selected privileges. DB Mail Database setup will automatically
synchronize selected and actual privileges.

 Tip: You can change user access privileges at any time by rerunning DB Mail Database Setup
utility and choosing "Manage User Access" option again. The Database Setup utility will automatically

2

3

4

3 3 5

CHAPTER 4, Installation and Uninstallation

 - 49 -

retrieve and show existing access privileges.

Testing

After you complete database-side installation the DB Mail Setup Wizard will offer to test the installed
DB Mail messaging interface. If you choose to test it, the Test DB Mail Database Setup dialog will
appear. Using this dialog you can test messages of different types. You can test all messages at once
or you can pick any
combination of messages.

To run tests:

1. Check which messages
you want to send.

2. Enter message recipient
numbers and names.

3. Click the Test button

DB Mail will create selected
messages by running
appropriate SQL statement in
the database.

If you get any errors make
sure to read additional test
information shown on the Test
Results tab page, if
necessary, use scrollbars to
scroll the displayed test
results.

 Important notes:
DB Mail Server Console must be used to configure database connection profiles and messaging
options if you want to check how test messages get delivered to their destinations. If you do not do so
before or during the testing phase your test messages will be saved in the message queue and will
remain there until you run DB Mail Server Console and configure database connection profiles and
messaging options. For more information on setting DB Mail configuration options see CHAPTER 5,
Configuring DB Mail.

Uninstallation

The DB Mail supports standard uninstallation mechanism for removing program files from the system
where DB Mail was previously installed.

To uninstall DB Mail do the following:

1. Click Windows Start button, from the Start Menu select Settings, then Control Panel.

CHAPTER 4, Installation and Uninstallation

 - 50 -

2. Double-click Add/Remove Programs.

3. Select the DB Mail 2 item in the programs list, click Add/Remove button

Delete all files that are left behind in the DB Mail home directory. Delete the home directory.

 Important Note: If you wish to uninstall DB Mail database back-end objects you should run DB
Mail Database Setup utility before uninstalling DB Mail server components.

After you uninstall main DB Mail objects using DB Mail Database Setup utility you may also want to delete
additional files copied during the Installation procedure.

Microsoft SQL Server

If you uninstall DB Mail from Microsoft SQL Server, do not forget to manually delete xp_dbmail.dll file from
SQL Server BINN directory.

DB2

If you uninstall DB Mail from IBM DB2 server, do not forget to manually delete all *.class files from [DB2
home]/SQLLIB/function/DBMAIL subdirectory on your DB2 server.

1

CHAPTER 5, Configuring DB Mail

 - 51 -

CHAPTER 5, Configuring DB Mail

Before you can use DB Mail you must configure database connections and email properties. To change
DB Mail configuration, select File/Options item in the DB Mail Server Console menu. The DB Mail
Options dialog will appear. This dialog contains 10 tab pages for different DB Mail options. They are:

• Database

• Queue

• Error Handling

• Self-checking

• Archiving

• Email

• SMS & Pager

• Pop-up & Alerts

• Fax

• Voice & Phone

You will need to configure these options carefully for DB Mail to work properly and effectively. To better
explain the features, screen shots are presented along with explanations for the options.

Configuring Databases Options

Database connections for DB Mail are specified here. Before you add a new database connection,
make sure you have already completed installing DB Mail in your database(s). See the DB Mail By
default VoMS server is installed without a password meaning that anyone on your network who has
VoMS Administrator utility installed cannot connect to the VoMS server. It is highly recommended that
immediately after the installation you use the VoMS Administrator utility to set a password for all
administrative connections. If you choose to set a password, click the Password button available on
the Users screen. Enter new password and press the OK button to save it. The password will be stored
in encrypted format in the system registry and all consecutive connections to the VoMS server will
require the same password entered on the VoMS Administrator connection dialog.

Back-end Installation topic for details. The details of all the databases where you would like users to
send email using DB Mail will need to be captured here, and Profiles assigned to them.

CHAPTER 5, Configuring DB Mail

 - 52 -

Configuration Option Description

Profile Database profile is the name (up to 50 characters long) for the set of
parameters that define a connection to a particular database. Enter
any descriptive name. When logging various errors and messages DB
Mail uses this profile name as a reference name for the message
source.

Driver Specifies which database driver/connection method to use when
connecting to your database. You should select the driver that
matches your DBMS version.. Please refer to CHAPTER 2,
Connecting To Your Database for more details of the various driver
choices and what should be selected. The drop down box in the
graphic above shows all the supported drivers.

 Important note:

When choosing a native database driver for the connection, make
sure that you select the driver that matches the version of your
database client software installed on the system, not the version of
your database server software. For example, if you have Oracle
SQL*Net 2 with Oracle 7.3 client files installed on your workstation but
connect to an Oracle 8i database, you should select OR7 Oracle 7.3
driver for the connection.

Server The server name or server connection string specifying parameters
that the database driver uses to connect to the database server. For
ODBC data sources specify data source name. For native database
drivers it should be the same string that you use when connecting
from SQL*Plus, ISQL and other database utilities. For more details on
setting up database connection parameters, see CHAPTER 2,
Connecting To Your Database.

User A valid login ID for your database server that has full access to the

CHAPTER 5, Configuring DB Mail

 - 53 -

objects required by DB Mail.

Password The login password of your database server. The password you type
is displayed in asterisks (*).

 button
Click this button to add a new row to the list of database connections

 button
Click this button to remove the selected row from the list of database
connections

Polling interval Use this property to specify how often you want the daemon process
to perform the check for new email messages placed to the DB_MAIL
pipe.

A note of caution: The DB Mail daemon process can check for new
messages virtually every second. However, frequent checking will
cause additional network and database load. If you are not planning to
send large amounts of email messages every day, set this to a more
reasonable value, such as 60 seconds.

Logging level Logging level specifies the amount of information you want DB Mail to
log for auditing and troubleshooting purposes. The following 3 levels
are available:

•••• Normal – This level includes various status messages and
all email processing errors.

•••• High – This level includes all messages that are provided
with the Normal level as well as some additional messages
describing DB Mail progress of work. You should use this
level when troubleshooting DB Mail.

•••• Development – This level includes all messages that are
provided with the High level as well as complete text of all
email, fax, page and other messages sent via DB Mail. You
should use this level when troubleshooting your SQL code
that generates these messages.

 Important notes:

DB Mail logs all selected messages to the screen and DB_MAIL.LOG
file. The screen buffer is limited to 1000 lines produced by the most
recent messages. The DB_MAIL.LOG file is located in the same
directory where the DB Mail software has been installed (\Program
Files\DB Mail2 by default) and has no size limit. It should be deleted
or archived from time-to-time; otherwise it may easily grow large
leading to disk space usage problems. Note that higher logging levels
allow more information written to the log file thus causing the log file to
grow faster. You should use High and Development levels only when
you are troubleshooting message processing problems and use
Normal or Low levels at all other times.

 Important notes:
Specifying the database administrator's id and password in the Profile may compromise Security, as
the passwords are stored in the registry of the DB Mail server. To avoid this, you may want to create a
specific user on the remote database who has limited access only to the DB Mail objects named
previously.

CHAPTER 5, Configuring DB Mail

 - 54 -

Configuring Email Options

DB Mail supports three different email interfaces: standard Windows MAPI (Messaging Application
Programming Interface), SMTP (Simple Mail Transfer Protocol), and Lotus Notes interface utilizing
Lotus Notes API. DB Mail uses the selected interface when sending email messages.

 Important Note:

Only one of these three interfaces can be selected at any time. The DB Mail Server will need to be
restarted if this option is changed.

 Tip:

If your telephone company supports an email-to-pager service, you can also configure DB Mail to page
messages to alphanumeric pagers by sending them to the appropriate email address. Do not confuse
this option with the DB Mail paging service, which uses SNPP protocol over TCP/IP network to send
numeric and text messages to pagers and cell phones.

The options are explained below.

Configuration Option Description

Email system Select one of the following:
•••• MAPI
•••• SMTP
•••• Lotus Notes

Based on your email system selection you should complete the
corresponding email system properties box. Depending on the
Email system chosen, the other property boxes will be grayed out.

MAPI Profile This is the name of a MAPI profile. MAPI profile contains a set of
parameters that define a connection and email send method to a

CHAPTER 5, Configuring DB Mail

 - 55 -

particular mail server. Type the desired name or click the button
to select the name of an existing MAPI profile. If you don't have a
profile yet or would like to create a new profile, use the Control
Panel/Mail applet to create MAPI profile. For details on creating new
MAPI profiles see the Configuring New MAPI Profile topic later in this
chapter.

MAPI Password Enter a valid password required to logon to your email client. Leave
this field blank if your email client does not require a password.

MAPI Send Method Different email clients use various internal MAPI properties when
sending email messages. For example, Microsoft Outlook® expects
the email address or email user name to appear in the Name property,
while others such as Netscape Messenger® expect it to appear in the
Address property. Select the Send Method that is compatible with
your email client.

Important notes: If the selected method is not compatible with your
email client, an Email Compose window will appear on the screen for
every email message sent using MAPI interface. To avoid this
situation, select another method.

SMTP Server Name of your SMTP server

SMTP Port Port used by your SMTP Server for SMTP listening. The default port
used by most servers is 25.

Default Email Account Default sender email address to be used for outgoing email when
sender is not specified.

Important notes: Some email servers require valid email address for
authentication.

Encoding Select the desired encoding method that is supported by the
recipient's email programs. Today most email programs support
mime.

Important notes: For email messages with attachments DB Mail
ignores the selected encoding method and always uses mime. If you
are going to send email messages to a pager, you should select none
for the encoding.

Lotus Notes User Valid user name that you use to logon to your Lotus Notes client
software.

Lotus Notes Password Valid password that you use to logon to your Lotus Notes client
software.

Important notes:

• MAPI and SMTP interfaces enable DB Mail to interact with multiple messaging systems
across a variety of software and hardware platforms whereas Lotus Notes interface works
with the following configurations only:

1) Lotus Notes workstation v4.5 and later running on Windows NT workstation or
server (Intel platforms only). There is no limitation with respect to the Lotus Notes
server version and platform.

2) Lotus Notes server v4.5 and later running on Windows NT server (Intel platform
only).

• If you have installed Lotus Notes MAPI extensions, you can still use MAPI interface to send

CHAPTER 5, Configuring DB Mail

 - 56 -

and receive email via Lotus Notes. It is recommended that the MAPI interface be used
wherever possible. The Lotus Notes interface may not keep up with the newer versions of the
Lotus Notes although SoftTree Technologies will make all efforts to release updated versions
where required.

• DB Mail Lotus Notes interface consists of two parts:

o Notes email interface library

o Notes extension manager

DB Mail email interface library for Lotus Notes always uses the default Notes mail database
and mail server. Default settings are taken from Notes environment variables.

Warning:

DB Mail installs Notes extension manager program that intercepts the Notes password prompt,
and supplies the password that you specified in the DB Mail options. The extension manager
allows sending email messages via Notes without user intervention when Notes normally requires
a password. The extension manager program is built as a set of dynamic link libraries (DLLs).
These DLLs are loaded by Lotus Notes on startup, and they behave as if they are part of the
Lotus Notes software. While a DB Mail email operation is in progress, your Lotus Notes is
exposed to other users and programs because no password is required at that moment to interact
with the Lotus Notes software. Before selecting Lotus Notes interface, make sure you don't have
another Notes extension manager already installed on your system. To verify this, make sure you
don't have the EXTMGR_ADDINS key in the NOTES.INI file or that key is not initialized.

Configuring New MAPI Profile

Before you configure a new or existing MAPI profile, make sure you have some email client
software installed on the DB Mail computer. The following instructions refer to the configuration of
MAPI for Microsoft Outlook ®, but they can be easily adopted for other email client software.

To configure MAPI with the Outlook client on the DB Mail computer follow these steps:

1. In Control Panel, double-click the Mail icon.

2. Click Add.

CHAPTER 5, Configuring DB Mail

 - 57 -

3. Select the Microsoft Exchange Server check box or select any other available mail server
check box that appears in the Information Services list. Click Next.

4. Type the Exchange Server name in the Microsoft Exchange server box, type db_mail or any
other name in the Mailbox box, and then click Next.

CHAPTER 5, Configuring DB Mail

 - 58 -

5. Verify that No is selected. If it is not already selected, click No, and then click Next.

6. Type the path and name of your Personal Address Book or choose the default provided, and
then click Next. Microsoft recommends that you store this information in the Windows NT
Profiles directory; for example, C:\Winnt\Profiles\db_mail. This will help to prevent the file from
being accidentally overwritten.

CHAPTER 5, Configuring DB Mail

 - 59 -

7. Click Finish.

Configuring SMS and Pager Options

DB Mail can be configured to directly send SMS messages to alphanumeric pagers and cell phones.
This is performed using the Simple Network Page Protocol. In Oracle, the SMS interface is accessed
via the SEND_PAGE function call in the DB_MAIL package. In other databases the Pager is accessed
via the SendPage stored procedure or by directly inserting data into DBMAIL.PIPE table.

CHAPTER 5, Configuring DB Mail

 - 60 -

Configuration Option Description

SNPP (pager) server SNPP (pager) server – Name of your Simple Network Page Protocol
server computer – just as with SMTP server this could be a network
name or an IP address. This is the system name of your SNPP service
provider (Telecom company). For example, Verizon uses
snpp.myairmail.com. To find out your SNPP server name contact your
service provider.

Port Port – Port on which SNPP server listens for pager messages.
Standard port number is 444 but different providers for security reasons
may use different port numbers. Contact your service provider for more
information.

Max. message size Max. message size – maximum size of alpha (e.g. text) messages
supported by your service provider and pager -- usually 240 characters.

Configuring Network Popups and Alerts Options

DB Mail can be configured to send network popup messages and alerts to computers/users in the
same domain/workgroup. In Oracle, the Network Popups and Alerts interface is accessed via the
SEND_POPUP_MESSAGE and SEND_ALERT function calls in the DB_MAIL package. In other
databases the interface is accessed via the SendPopupMessage and SendAlert stored procedures or
by directly inserting data into DBMAIL.PIPE table.

These functions require that NT Messenger service is running on the recipient's computers. Recipients
must be running Windows NT 4, 2000, XP, 2003 or later. This functionality is identical to the Windows
NT NET SEND command.

CHAPTER 5, Configuring DB Mail

 - 61 -

Configuration Option Description

Broadcast option Broadcast option – controls what DB Mail does when a NULL value is
specified for the recipient parameter in the
DB_MAIL.SEND_POPUP_MESSAGE function. If checked the message
is displayed on every computer in the domain. If there is no domain
(domain-less environment such as a peer-to-peer network), it is
displayed on every computer in the workgroup. If this options is not
checked messages with null recipient names are ignored.

Send alerts for recipients in
NT alert list

Sends alerts for recipients in the NT alert list – controls how DB Mail
executes DB_MAIL.SEND_ALERT function. If checked DB Mail will
send interruptible alert messages to system administrators whose
names are specified on the NT server.

Send alerts for recipients in
the custom list

Sends alerts for recipients in the custom list – Allows an alternative list
for use with DB_MAIL.SEND_ALERT. This may be helpful if the person
who configures the DB Mail does not have admin rights or access to the
alert list on NT server.

Computer or user name Use this field to add specific computers or user names who should
receive the pop-ups and alerts

Configuring Fax Options

DB Mail can be configured to send electronic faxes. In Oracle, the Fax interface is accessed via the
SEND_FAX and SEND_FAX_EX function calls in the DB_MAIL package. In other databases the Fax
interface is accessed via the SendFax and SendFaxEx stored procedures.

CHAPTER 5, Configuring DB Mail

 - 62 -

Configuration Option Description

Fax queue folder Folder where pending documents are queued for faxing. This folder is
used by the Fax driver. Do not select DB Mail queue folder as it has
nothing to do with DB Mail message queuing options.

Number of retries This parameter controls how many times to retry faxing if the
destination number is busy or not responding properly. If all attempts
fail, the message is marked as failed and the document is moved to the
Failed Faxes folder.

Retry interval Minimum time to wait between fax retries.

Fax driver Name of the fax driver as it appears in Windows Control Panel Printer's
applet.

Fax servers Location of the fax server computer. The Fax server can be run on a
computer where DB Mail is installed or any other computer on the
network. DB Mail uses the fax server to process Fax messages. DB
Mail actually prints fax messages to a Fax compatible graphic file,
which it sends to the fax server for further processing.

 Tip: Fax transmissions are relatively slow operations. DB Mail
provides built-in support for fax processing scaling out strategy
(scaling out is the strategy that increases the capacity of an
infrastructure tier to handle load by adding servers, thereby
increasing the aggregate capacity of those servers). DB Mail
server can be configured to work with multiple fax servers
concurrently in order to increase the overall system throughput. As
your fax processing volume grows you can add additional fax
servers as needed and configure DB Mail server accordingly.

To instruct DB Mail server to use multiple fax servers enter fax server
computer names or IP addresses as a comma-separated list. Order of
server names in the list is not important because DB Mail uses simple

CHAPTER 5, Configuring DB Mail

 - 63 -

round-robin method to communicate to multiple servers.

Fax Printer Fax Printer name as it appears in Windows Control Panel Printer's
applet.

Port Port as it appears in Windows Control Panel Printer's applet.

Default cover page Name of cover page file to use when NULL is specified for cover page
parameter in DB_MAIL.SEND_FAX and DB_MAIL.SEND_FAX_EX
functions. You can design cover pages using MS Cover Page Designer,
which is a part of the Fax server software. Cover pages must be stored
on the Fax server computer. For more information see Creating and
modifying cover pages section.

Company name, mail
address, phone, fax

Default values for Company name, mail address, phone, fax to be
inserted into the specified cover page when DB_MAIL.SEND_FAX is
used.

 Important Note:
Fax Server software is installed by default on all Windows 2000/XP/2003 computers. Fax Server can
run on any server or workstation. The computer must have a modem or modem pool and be connected
to a phone line in order to send electronic faxes.

Configuring Voice Messaging Options

DB Mail can be configured to make phone calls and send pre-recorded or dynamically synthesized
voice messages. In Oracle, the Voice Messaging interface is accessed via the SEND_VOICE function
call in the DB_MAIL package. In other databases the Voice Messaging interface is accessed via the
SendVoice stored procedure or by directly inserting data into DBMAIL.PIPE table.

CHAPTER 5, Configuring DB Mail

 - 64 -

Configuration Option Description

Number of retries This parameter cannot be controlled through DB Mail interface and
must be configured on the VoMS server using VoMS Administrator
utility. This parameter controls how many times to retry calling if the
destination number is busy or not responding properly. If all attempts
fail, the message is marked as failed and the document is moved to the
Failed Messages folder.

Retry interval Minimum time to wait between phone call retries.

Voice servers Location of the VoMS server computer. The VoMS server can be run on
a computer where DB Mail is installed or any other computer on the
network. DB Mail uses the VoMS server to process voice messages.
DB Mail actually uses the built-in VoMS client software to transmit
messages to the to the VoMS server for further processing.

 Tip: Making phone calls and sending voice messages are
relatively slow operations. DB Mail provides built-in support for
voice processing scaling out strategy (scaling out is the strategy
that increases the capacity of an infrastructure tier to handle load
by adding servers, thereby increasing the aggregate capacity of
those servers). DB Mail server can be configured to work with
multiple VoMS servers concurrently in order to increase the overall
system throughput. As your call processing volume grows you can
add additional VoMS servers as needed and configure DB Mail
server accordingly.

To instruct DB Mail server to use multiple VoMS servers enter VoMS
server computer names or IP addresses as a comma-separated list.
Order of server names in the list is not important because DB Mail uses
simple round-robin method to communicate to multiple servers.

Port Port number as it is configured in the VoMS server properties.

Logon user name Name of the user for VoMS server authentication. This property cannot
be changed and always defaults to DB MAIL.

 Important Note:
VoMS Server software is not installed by default. To install the limited version of the VoMS server that
comes with every DB Mail license use the DB Mail setup program and choose to install VoMS Voice
Message Server software. To install the full version contact SoftTree Technologies to obtain the VoMS
server license. The VoMS server can be installed and can run on any server or workstation. The
computer must have a sound card and a voice modem or Intel Dialogic phone board and be connected
to a phone line in order to make phone calls and send voice messages.

Configuring Queue Options

For improved database performance DB Mail can queue messages obtained from the DB_MAIL
database pipe. This asynchronous out-of-database message queuing allows DB Mail to obtain new
messages while sending messages that arrived earlier. The new messages are extracted from the pipe
almost immediately as they are placed to the DB_MAIL pipe by your SQL code running within the
database. Therefore, your SQL code does not wait for the messages to be sent.

CHAPTER 5, Configuring DB Mail

 - 65 -

For disk space usage and processing efficiency, DB Mail stores messages in compressed format.

Configuration Option Description

Enable message queuing The Message Queue is optional. You can turn it on/off by
selecting/deselecting this option.

Message queue folder This is the directory where DB Mail stores queued messages and
other temporary files. You can type the folder name or use the
Browse button to select a different folder.

Maximum queue size Specifies how much disk space to use for the files in the Message
Queue folder. The more disk space you allot to the folder, the more
messages DB Mail can store on your hard disk. If you are low on disk
space, you might want to set this option to a lower percentage. If there
is not enough space to store a newly arrived message, DB Mail stops
processing new messages until free space become available in the
folder. Note that sent messages are removed from the queue
immediately so the space can be reused by other messages.

To change the "maximum queue size" value, you can drag the slider
control by mouse or for more precision positioning use Arrow Left
and Arrow Right keys on your keyboard to move the slider control.

 Important notes:
You must restart DB Mail Server before new changes for the Message Queue will take effect. If you
change Message Queue folder and restart DB Mail while some messages are still waiting in the queue,
all unsent messages will remain in the old message queue folder.

CHAPTER 5, Configuring DB Mail

 - 66 -

Configuring Error-Handling Options

For your convenience, DB Mail supports customizable error handling so that you can tune DB Mail to
your error handling requirements.

Note that both email as well as Network pop-up messages can be sent for most Error conditions.

Configuration Option Description

Database Communication
Errors

This option instructs DB Mail to notify system administrators in case
the database connection is broken, server is down or not available
and so on.

Database Pipe Errors or
Malformed Messages

This option instructs DB Mail to notify system administrators and the
email sender in case DB Mail is unable to retrieve valid message data.

Email System
Communication Errors

This option instructs DB Mail to notify system administrators in case it
is unable to communicate to your email server. This option is
applicable for SMTP email interface only. If you are using MAPI or
Lotus Notes interface, use your email client options to configure error
handling.

Email Delivery Errors This option instructs DB Mail to notify system administrators and email
sender in case your email server (SMTP interface) or your email client
(MAPI and Lotus Notes) are returning an error indicating that the
email message cannot be delivered. For example, this error can be
detected if your email server does not recognize the recipient's
address or sender’s name. This error WILL NOT be detected if your
MAPI or Lotus Notes client does accept the message but later (after
the fact the message was sent by DB Mail) the email server rejects it.
In that case, the email sender should receive an automated reply
notice directly from the email server.

Administrator's email This is the system administrator email address that DB Mail can use

CHAPTER 5, Configuring DB Mail

 - 67 -

address to send error notification messages. If you have more that one
administrator whom you want to be notified in case of detected
problems, specify their email addresses as a coma-separated list. If
no email is specified, DB Mail ignores error-handling options for which
it is supposed to send an email notification.

Administrator's network
name

This is the system administrator network name that DB Mail can use
to send error notification messages. If you have more that one
administrator whom you want to be notified in case of detected
problems, specify their network workgroup name so that everyone in
the workgroup can be notified. If no network name is specified, DB
Mail ignores error-handling options for which it is supposed to send a
network message notification.

Recovery Options for
Broken Database
Connections

Number of Retries – This option instructs DB Mail how many times it
should attempt to reestablish broken database connections.

Retry Interval – This option instructs DB Mail how many seconds it
should wait before making a new attempt to reestablish a broken
database connection.

Recovery Options for
Broken SMTP
Communications

Number of Retries – This option instructs DB Mail how many times it
should attempt to resend an email message in case the email-server
is not responding. This option applies to SMTP email interface only.

Retry Interval – This option instructs DB Mail how many seconds it
should wait before making a new attempt to resend an email
message. This option applies to SMTP email interface only.

Important note:

You must restart DB Mail Server before new changes for the Error Handling will take effect

Configuring Self-Healing and Maintenance Options

DB Mail supports the following self-monitoring and healing options

CHAPTER 5, Configuring DB Mail

 - 68 -

Configuration Option Description

Check database daemon
processes

This option instructs DB Mail to monitor the internal database daemon
processes and automatically restart them in case if database daemon
process dies as a result of a hung or broken database connection.

Note: DB Mail database daemons use internal "heart bit" procedures
to periodically report to the DB Mail console their status. DB Mail
console then verifies the reported values and if necessary restarts
hung or failed daemons.

Check frequency– This option controls how often DB Mail checks
daemon statuses.

Check message
processors

When running as service DB Mail service control process can
periodically validate status of the DB Mail console and internal
message queue processors.

This option instructs DB Mail service control process to monitor the
console and message queue processors and automatically restart
them in case if they fail.

Note: DB Mail database console uses internal "heart bit" procedures
to periodically report to the DB Mail service control process statuses
of the message queue processors. If a problem detected DB Mail
service control process then automatically restarts the console and
effectively all message queue processors.

Check frequency– This option controls how often DB Mail checks
message queue processor statuses.

Database Maintenance
Options

Run DB Mail work table maintenance tasks – This option instructs
DB Mail to periodically verify contents of the MAIL_ATTACH work
table and purge data left as a result of old undeliverable messages.

Monthly, weekly, daily – This option instructs DB Mail how often to

CHAPTER 5, Configuring DB Mail

 - 69 -

run the work table maintenance procedure.

Important note:

You must restart DB Mail Server before new changes for the Self-Healing and Maintenance Options
will take effect

Configuring Archiving Options

DB Mail can optionally log and archive all sent email messages. If archiving is enabled, every message
that was successfully sent is appended to the MESSAGE.LOG file in the ‘Sent Messages’ folder. All
undeliverable messages are appended to the MESSAGE.LOG file in the ‘Undeliverable’ folder. If
archive backup option is enabled, DB Mail automatically renames these log files at the specified time
and creates new log files as soon as it processes the next email message.

Configuration Option Description

Archive Sent Messages This option instructs DB Mail to archive all messages sent
successfully.

Folder option – this is the folder in which DB Mail logs sent
messages. You can type the folder name or use the Browse button to
select a different folder.

Archive malformed and
Undeliverable Messages

This option instructs DB Mail to archive all failed (in other words,
undeliverable) messages as well as malformed messages.

Folder option – this is the folder in which DB Mail logs undeliverable

CHAPTER 5, Configuring DB Mail

 - 70 -

and malformed messages. You can type the folder name or use the
Browse button to select a different folder.

Archive Sent Faxes This option instructs DB Mail to archive all faxes sent successfully.

Folder option – this is the folder in which DB Mail logs sent faxes. You
can type the folder name or use the Browse button to select a
different folder.

Archive malformed and
Undeliverable Faxes

This option instructs DB Mail to archive all failed (in other words,
undeliverable) faxes as well as malformed messages.

Folder option – this is the folder in which DB Mail logs undeliverable
and malformed faxes. You can type the folder name or use the
Browse button to select a different folder.

Disk space recycling
Options

This options allows space recycling by deleting all messages older
than the specified number of days

Backup Archives This option instructs DB Mail to periodically archive message logs.
Archived logs are stored in the same directories where they were
created. Depending on the value of the Compress Old Archives
options, logs are either renamed and stored as .LOG files or renamed
and compressed into standard .ZIP files. The name of the archived file
is messageMMDDYYYY.log where MMDDYYYY is substituted with
month, day and year when the archive was created.

Compress Old Archives This option instructs DB Mail to stored archived logs as standard .ZIP
files.

Backup Frequency This option instructs DB Mail when to archive current logs and start
new ones.

 Important note:

You must restart DB Mail Server before new changes for the Archive Options will take effect.

Configuring User-Access and Security

Run DB Mail Database Setup program and then use Manage User Access option to grant/revoke user
access. For more information see Managing user access to DB Mail features topic from the DB Mail
installation chapter.

CHAPTER 6, Sending email messages

 - 71 -

CHAPTER 6, Sending email messages

Overview

To send email messages from database applications use the dbmail.SendMail method or the
DB_MAIL.SEND_MAIL call for Oracle. This method can be used to send email messages to single or
multiple message recipients.

Messages can be sent in different email formats including TEXT, HTML, RTF, XML and other.

Email messages can include optional email attachments. If supported by your database attachments
can be created from external files and/or from text and binary data stored in database tables. To send
email message with attachments you must first load attachments using the dbmail.AttachFile or
dbmail.AttachData methods. Text type attachments can be also created and deleted dynamically
using the dbmail.CreateMailFile or dbmail.DeleteMailFile methods. In all databases
except Sybase, the dbmail.CreateMailFile method creates attachment as operation system files
on the database server computer. In Sybase this method creates attachments as chunks of text saved
in the dbmail.mail_file table.

For detailed method descriptions and usage examples specific to your database system refer to the
following topics in this chapter.

Oracle

SEND_MAIL
Use this method to send email messages from your database. The definition of SEND_MAIL function is
shown below:

Definition

db_mail.send_mail(
 recipients VARCHAR2,
 subject VARCHAR2,
 message VARCHAR2,
 reply_to VARCHAR2 DEFAULT NULL,
 content_type VARCHAR2 DEFAULT 'text/plain',
 priority INTEGER DEFAULT 1,
 attachment_id NUMBER DEFAULT NULL)
RETURN NUMBER

Argument Max Size;
Value Range

Description

Recipients 4000 Email address of message recipient. If you need to send the same
message to multiple recipients, use comma to separate multiple recipient
addresses. You can also specify valid email user groups. Email groups

CHAPTER 6, Sending email messages

 - 72 -

(also known as D-Lists or Distribution Lists) can be configured using your
mail server administration tools.

Subject 255 Email message subject

Message 4000 Email message text.

 Tip: If you need to send a message whose text is longer than the
maximum size of varchar data-type in your database you can use a
special attachment file with the name message and no extension. DB
Mail will use the contents of that file for the message text. The value of
the Message parameter will be ignored in that case. For more
information see Error! Not a valid result for table. topic.

Reply-to
(optional)

255 Sender's email address. Note that this property is used with SMTP
interface only. Your server must support relay forwarding if you want to
set the sender's email address to a value different from the one specified
in the DB Mail email configuration. When using MAPI and Lotus Notes
interfaces, DB Mail ignores this property. Also, note that for both MAPI
and Lotus Notes, your email messages will have sender's address
specified in the profile of the user whose account you used to configure
DB Mail Server mail options.

Content_Type
(optional)

50 Message content type is one of text/plain, text/html, text/xml. Note that
this property is used with SMTP interface only. When using MAPI and
Lotus Notes interfaces, DB Mail ignores this property. If you specify
NULL or omit this parameter, DB Mail uses the default value, which is
text/plain.

Priority (optional) 0..2 Message processing priority takes a value of 0, 1, or 2. Note that this
property is used only when Message Queuing is enabled in DB Mail
options. Messages having higher priority numbers are processed before
messages having lower priority numbers. Email messages sent using
SMTP protocol also inherit this priority attribute.

Attachment_ID
(optional)

 ID of the record or group of records in the MAIL_ATTACH table
containing attachment data. Message attachment should be created
using DB_MAIL.ATTACH_FILE and DB_MAIL.ATTACH_DATA methods.

Return values:

0 - Success.

1 - Timed out. This procedure can timeout either because it cannot get a lock on the pipe, or because
the pipe remains too full to be used.

3 - An interrupt occurred.

 Usage Tips:

If you add a call to the SEND_MAIL function from a multi-row SQL statement such as SELECT ...
FROM ... TABLE, Oracle will invoke the SEND_MAIL function as many times as many rows are
affected by the statement.

CHAPTER 6, Sending email messages

 - 73 -

The following examples demonstrate how to send email messages using DB Mail functions.

Example 1 (SQL):

The following SELECT statement will send email to all users who run batch jobs and whose database
password is going to expire next Monday. This assumes that the BATCH_USER table contains the
EXPIRE_DATE, the USERID and FNAME columns, which represent the expiry date of the password,
the email user id and the full user name.

SELECT db_mail.send_mail(userid || '@domain.com',
 'Password expiration',
 'Dear ' || fname || ',' || chr(10) || chr(10) ||
 'Your database password will expire next Monday. ' ||
 'Be sure to update your batch jobs before that date.' || chr(10)
 || chr(10) ||
 'If you need assistance, reply to this message with ' ||
 'your questions',
 'helpdesk@domain.com')
FROM batch_user
WHERE expire_date = TRUNC(SYSDATE + 3);

Example 2 (PL/SQL):

This is a more advanced PL/SQL example of a similar use of the DB_MAIL.SEND_MAIL function:

/***
* This functions debits the specified account by specified amount
* only if there are sufficient funds to cover the withdrawal, and if there
* are not, it sends an email alert to the account manager.
* This function returns new account balance.
***/
CREATE OR REPLACE FUNCTION acct_debit (acct_nbr CHAR(10),
 debit_amt NUMBER(5, 2))
RETURN INTEGER
AS
DECLARE
 acct_balance NUMBER(11,2);
 ret_code INTEGER := -1;
BEGIN

 SELECT balance INTO acct_balance
 FROM accounts
 WHERE acct = acct_nbr
 FOR UPDATE OF balance;

 IF acct_balance >= debit_amt THEN
 BEGIN
 acct_balance := acct_balance - debit_amt
 UPDATE accounts
 SET balance = acct_balance
 WHERE acct = acct_nbr;

 COMMIT;

 ret_code := 1; -- success
 END;
 ELSE
 -- Insufficient funds.

CHAPTER 6, Sending email messages

 - 74 -

 -- Send email notification to the account manager

 SELECT db_mail.send_mail(m.email,
 'WARNING: Insufficient funds',
 'Time: ' || SYSDATE || chr(10) ||
 ' Account: ' || acct_nbr, NULL)
 INTO ret_code
 FROM managers m, accounts a
 WHERE m.mgr_id = a.mgr_id
 AND a.acct = acct_nbr;

 -- If email was sent successfully set ret_code to 0,
 -- otherwise leave it as -1
 IF ret_code = 1 THEN ret_code := 0; END IF;
 END IF;

 RETURN ret_code; -- return code 1 indicates success
 -- 0 indicates insufficient funds and successful
 -- notice
 -- -1 indicates insufficient funds and failed
 -- notice
END acct_debit;

Example 3 (sending email in HTML format):

The following SELECT statement will send the email to all users who run batch jobs and whose
database password is going to expire next Monday. It is similar to the first example, but uses HTML
rather than plain text – note the use of the ‘text/html’ content type description:

SELECT dbmail.send_mail(userid || '@domain.com',
 'Password expiration',
 '<p>Dear ' || fname || ',</p>' ||
 '<p>Your database password will expire in 3 days. ' ||
 'Be sure to update your batch jobs before that date.</p>' ||
 '<p>If you need assistance, ' ||
 'reply to this message with your questions</p>',
 'helpdesk@domain.com',
 'text/html')
FROM batch_user
WHERE expire_date = TRUNC(SYSDATE + 3);

ATTACH_FILE
Use this method to attach external files to email messages sent using SEND_MAIL function. To attach
data already stored inside the database in BLOB columns, use the ATTACH_DATA function. The
definition of ATTACH_FILE function is shown below:

Definition

 FUNCTION db_mail.attach_file(
 id NUMBER,
 file_name VARCHAR2,
 dir VARCHAR2)
 RETURN NUMBER

CHAPTER 6, Sending email messages

 - 75 -

Argument Max size;
Value range

Description

ID Attachment group ID.

In order to generate unique Attachment IDs, pass NULL as a parameter
when calling ATTACH_DATA or ATTACH_FILE for the first time for every
email message. The called function will return a unique ID that you must
use in subsequent calls when attaching more files or data to the same
message.

File_Name 255 Name of the attached file as it will appear in the email message. The name
must conform to standard file naming conventions and should not include
file path. File name must be unique within a single email message.

Dir 30 Name of Oracle directory object pointing to the existing operation system
directory on the database server computer where the specified File_Name
can be found.

IMPORTANT: Do not confuse directory object name with the name of
the actual directory containing files.

Return values:

-1 - Error. File cannot be opened or cannot be read. Verify file name and directory name are correct.
Also check that File_Name is not NULL.

Other – New attachment group ID is returned if NULL value is passed for the ID argument, otherwise
the value of the ID argument is returned.

 Usage Tips:

• If you want to attach more then one external file, call the ATTACH_FILE function as many times
as many files you want to add.

• To attach data already stored inside the database in BLOB columns, use the ATTACH_DATA
function.

• To attach both external files and data, call both functions as many times as there are attachments
you want to add. Note that every attachment will appear as a file in the resulting email message.
Names of files in the resulting message will match the names of files that you have specified as
arguments for the functions.

• In order to attach files you must have an Oracle DIRECTORY object created. You use that object
to specify where to look for the files to be attached. If you have files in multiple directories, create
one DIRECTORY object for each of them.

To create a DIRECTORY object in an Oracle 8, 8i or 9i database use Oracle CREATE
DIRECTORY SQL statement, which can be executed from SQL*Plus or other SQL Editor.

Syntax:

CREATE [OR REPLACE] DIRECTORY directory AS 'pathname';

CHAPTER 6, Sending email messages

 - 76 -

Examples:

In Windows systems: CREATE DIRECTORY images AS 'c:\myfiles\images';

In UNIX systems: CREATE DIRECTORY images AS '/public/LOB/files/images';

• If you want other users to be able to attach your files, make sure to grant them necessary read
permissions for your directory object.

Example:

To grant READ on directory images to user scott, execute the following statement:

GRANT READ ON DIRECTORY images TO scott;

• Calls to ATTACH_FILE and ATTACH_DATA functions can be nested, for example
ATTACH_FILE(ATTACH_FILE(NULL, 'file1.doc', 'MY_FILES'),
 'file2.doc', 'MY_FILES')

• Oracle 7 limitations: Mail attachments are not supported with Oracle 7.

 Important notes:

• DB Mail temporarily stores all attachments in the MAIL_ATTACH table. One message can have
up to 255 attachments. Every message must have a unique Attachment ID referencing
attachments that belong to that message. Within this group of records referenced by the
Attachment ID, every individual attachment must have a unique File ID and File Name. Both
Attachment ID and File ID are used as the surrogate key.

• DB Mail automatically deletes all attachments from the MAIL_ATTACH table after the message is
sent or queued for sending.

• You must create separate attachments for every email message. To send an identical message to
multiple recipients either send it to a user group using group name as recipient address or specify
all recipients as a comma-separated list. The maximum length of the list is limited by the size of
VARCHAR variable in your Oracle database version (normally 4000 characters). Only one copy of
attachments is needed in both cases. In all other cases you must create separate messages with
separate attachments for every recipient.

Examples

The following examples demonstrate how to send email messages with attachments using DB Mail
functions. Here are six brief examples for attaching an external file and data from BLOB columns. Note
that each example is specific to certain Oracle versions and attachment types.

Example 1 (Oracle 8, 8i, 9i, and 10g, BFILE, 1 message, 1 attachment):

DECLARE
 attach_id INTEGER;
 ret_code INTEGER;
BEGIN
 attach_id := db_mail.Attach_File(NULL, 'product.gif', 'IMAGES');

 ret_code := db_mail.send_mail('user@domain.com',
 'Test message with attachments',
 'This message has one attachment',
 NULL,

CHAPTER 6, Sending email messages

 - 77 -

 NULL,
 NULL,
 attach_id) ;
END;

Example 2 (Oracle 8, 8i, 9i, and 10g, BFILE, 1 message, 3 attachments):

DECLARE
 attach_id INTEGER;
 ret_code INTEGER;
BEGIN
 attach_id := db_mail.Attach_File(NULL, 'product1.gif', 'IMAGES');
 ret_code := db_mail.Attach_File(attach_id, 'product2.gif', 'IMAGES');
 ret_code := db_mail.Attach_File(attach_id, 'products3.gif', 'IMAGES');

 ret_code := db_mail.send_mail('user@domain.com',
 'Test message with attachments',
 'This message has three attachments',
 NULL,
 NULL,
 NULL,
 attach_id) ;
END;

Example 3 (Oracle 8, 8i, 9i, and 10g, BLOB, 1 message, 1 attachment):

DECLARE
 attach_id INTEGER;
 ret_code INTEGER;
 src_data BLOB;
BEGIN
 SELECT b_col
 INTO src_data
 FROM lob_table
 WHERE key_value = 21;

 attach_id := db_mail.Attach_Data(NULL, 1, 'product.gif', src_data);

 ret_code := db_mail.send_mail('user@domain.com',
 'Test message with attachments',
 'This message has one attachment',
 NULL,
 NULL,
 NULL,
 attach_id) ;
END;

Example 4 (Oracle 8, 8i, 9i, and 10g, BLOB, 1 message, 3 attachments):

DECLARE
 attach_id INTEGER;
 ret_code INTEGER;
 src_data BLOB;
BEGIN
 SELECT b_col
 INTO src_data
 FROM lob_table
 WHERE file_name = 'product1.gif';

CHAPTER 6, Sending email messages

 - 78 -

 attach_id := db_mail.Attach_Data(NULL, 1, 'product1.gif', src_data);

 SELECT b_col
 INTO src_data
 FROM lob_table
 WHERE file_name = 'product2.gif';

 ret_code := db_mail.Attach_Data(attach_id, 2, 'product2.gif', src_data);

 SELECT b_col
 INTO src_data
 FROM lob_table
 WHERE file_name = 'product3.gif';

 ret_code := db_mail.Attach_Data(attach_id, 3, 'product3.gif', src_data);

 ret_code := db_mail.send_mail('user@domain.com',
 'Test message with attachments',
 'This message has three attachments',
 NULL,
 NULL,
 NULL,
 attach_id) ;
END;

Example 5 (Oracle 8i, 9i and 10g, BFILE, many messages, 1 attachment):

SELECT db_mail.send_mail(customer_email,
 'New great product in our store',
 'We are happy to offer the product that you have asked for.' ||
 'For details please see the attached picture.',
 NULL,
 NULL,
 NULL,
 db_mail.Attach_File(NULL, 'product.bmp', 'IMAGES')) ;
FROM customer
WHERE customer_email IS NOT NULL
 AND status = 'A';

Example 6 (Oracle 8i, 9i and 10g, BFILE, many messages, 2 attachments):

SELECT db_mail.send_mail(customer_email,
 'New great products in our store',
 'We are happy to offer two product that you have asked for. ' ||
 'For details please see the attached pictures.',
 NULL,
 NULL,
 NULL,
 db_mail.Attach_File(Attach_File(NULL, 'product1.bmp', 'IMAGES'),
 'product2.bmp', 'IMAGES')) ;
FROM customer
WHERE customer_email IS NOT NULL
 AND status = 'A';

ATTACH_DATA
Use this method to attach data already stored inside the database in BLOB columns to email messages
sent using SEND_MAIL function. To attach external files, use the ATTACH_FILE function. The
definition of ATTACH_DATA function is shown below:

CHAPTER 6, Sending email messages

 - 79 -

Definition

 FUNCTION db_mail.attach_data(
 id NUMBER,
 file_name VARCHAR2,
 data BLOB)
 RETURN NUMBER

Argument Max size;
Value range

Description

ID Attachment group ID.

In order to generate unique Attachment IDs, pass NULL as a parameter
when calling ATTACH_DATA or ATTACH_FILE for the first time for every
email message. The called function will return a unique ID that you must
use in subsequent calls when attaching more files or data to the same
message.

File_Name 255 Name of the attached file as it will appear in the email message. The name
must conform to standard file naming conventions and should not include
file path. File name must be unique within single email message.

Data 2GB BLOB value (BLOB, LOB, CLOB, etc) containing the actual attachment
data.

Return values:

-1 - Error. Invalid blob value or invalid parameters. Check that File_Name is not NULL. Also check
BLOB value is initialized and the referenced BLOB column is not locked.

Other – New attachment group ID is returned if NULL value is passed for the ID argument, otherwise
the value of the ID argument is returned.

 Usage Tips:

• If you want to attach more then one BLOB, call the ATTACH_DATA function as many times as
many as the number of BLOB values you want to add.

• To attach external files, use the ATTACH_FILE function.

• To attach both external files and data, call both functions as many times as there are attachments
you want to add. Note that every attachment will appear as a file in the resulting email message.
Names of files in the resulting message will match names of files that you have specified as
arguments for the functions.

• Calls to ATTACH_FILE and ATTACH_DATA functions can be nested, for example
ATTACH_DATA(ATTACH_DATA(NULL, 'file1.doc', var_blob1),
 'file2.doc', var_blob2)

• Oracle 7 limitations: Mail attachments are not supported with Oracle 7.

CHAPTER 6, Sending email messages

 - 80 -

 Important notes:

• DB Mail temporarily stores all attachments in the MAIL_ATTACH table. One message can have
up to 255 attachments. Every message must have a unique Attachment ID referencing
attachments that belong to that message. Within this group of records referenced by the
Attachment ID, every individual attachment must have a unique File ID and File Name. Both
Attachment ID and File ID are used as the surrogate key.

• DB Mail automatically deletes all attachments from the MAIL_ATTACH table after the message is
sent or queued for sending.

• You must create separate attachments for every email message. To send an identical message to
multiple recipients either send it to a user group using group name as recipient address or specify
all recipients as a comma-separated list. The maximum length of the list is limited by the size of
VARCHAR variable in your Oracle database version (normally 4000 characters). Only one copy of
attachments is needed in both cases. In all other cases you must create separate messages with
separate attachments for every recipient.

Examples

See examples for the ATTACH_FILE function that also includes examples for the ATTACH_DATA.

CREATE_MAIL_FILE
Use this method to write various flat files to be attached to email messages or used with DB Mail fax
procedures. The definition of CREATE_MAIL_FILE procedure is shown below:

Definition

 PROCEDURE db_mail.create_mail_file(
 file_name VARCHAR2,
 text VARCHAR2,
 append BOOLEAN)

Argument Max size;
Value range

Description

File_Name 255 Name of the file to write to. File name should not include file path. The file
will be created in the directory on the database server computer. The actual
file location is specified by SYSTEM.MAILSTORE directory object.

Text 32765 Text to write to the file specified by the File_Name argument.

Append TRUE or
FALSE

Value of the Append argument specifies whether to create a new file or
append value of the Text argument to an existing file. If a value of TRUE is
passed for the Append argument and the file already exists,
CREATE_MAIL_FILE overwrites the existing file. If a value of FALSE is
passed for the Append argument and the file does not exist,
CREATE_MAIL_FILE fails and an application error is raised.

CHAPTER 6, Sending email messages

 - 81 -

Return values:

None. Oracle procedures do not return values.

If an error occurs one of the predetermined exceptions is raised. In case an exception is caught, check
Oracle SQLERRM session variable to obtain the error description.

 Usage Tips:

• Call CREATE_MAIL_FILE as many times for as many chunks of text you want to write to the file.

• When calling CREATE_MAIL_FILE for the first time to write the very first chunk of text, specify
FALSE for the Append parameter. In subsequent calls specify TRUE.

• If you use CREATE_MAIL_FILE to write a file attachment for the ATTACH_FILE function or to
write a fax file for the SEND_FAX or SEND_FAX_EX function and you do not need that file after
calling one of the Send methods you can delete it using DELETE_MAIL_FILE procedure. Please
note that DELETE_MAIL_FILE function is only available in Oracle 9i version and later. If you are
running Oracle 8 or Oracle8i you cannot delete files from within a database procedure or function.
Instead you should schedule a periodic operation system job to delete temporary files created
with CREATE_MAIL. When deleting files be careful to not delete files that have been written
already but not loaded yet. To avoid this timing issue, only delete files that are older than a few
hours.

Examples

The following examples demonstrate how to use CREATE_MAIL_FILE and DELETE_MAIL_FILE
auxiliary procedures.

Example 1 (create email attachment):

DECLARE
 ret_code INTEGER;
BEGIN
 db_mail.create_mail_file('report.htm',
 '<html><title>Test Report</title><body>' || chr(10) ||
 '<h2>Test Report</h2><hr>' || chr(10) ||
 '<table><tr><th bgcolor=black>Col 1</th>' ||
 '<th bgcolor=black>Col 2</th></tr>' || chr(10) ||
 '<tr><td>Value A</td><td align=right>1</td></tr>' || chr(10) ||
 '<tr><td>Value B</td><td align=right>2</td></tr>' || chr(10) ||
 '</table></body></html>', FALSE);

 ret_code := db_mail.send_mail('me@mycompany.com',
 'Test message with attachments',
 'The test report is attached. Please ignore this message.',
 'myname@mycompany.com',
 'text/plain',
 1,
 db_mail.attach_file(NULL, 1, 'report.htm', 'MAILSTORE'));

 IF ret_code != 0 THEN
 raise_application_error(-20010, 'SEND_MAIL Status = ' || ret_code);
 END IF;
END;

CHAPTER 6, Sending email messages

 - 82 -

Example 2 (create fax document):

DECLARE
 ret_code INTEGER;
BEGIN
 db_mail.create_mail_file('report.htm',
 '<html><title>Test Report</title><body>' || chr(10) ||
 '<h2>Test Report</h2><hr>' || chr(10) ||
 '<table><tr><th bgcolor=black>Col 1</th>' ||
 '<th bgcolor=black>Col 2</th></tr>' || chr(10) ||
 '<tr><td>Value A</td><td align=right>1</td></tr>' || chr(10) ||
 '<tr><td>Value B</td><td align=right>2</td></tr>' || chr(10) ||
 '</table></body></html>', TRUE);

 ret_code := db_mail.send_fax('+1 (123) 222-3344',
 'Test fax subject',
 'report.htm',
 'Generic',
 'Test recipient');

 db_mail.delete_mail_file('report.htm');

 IF ret_code != 0 THEN
 raise_application_error(-20010, 'SEND_FAX Status = ' || ret_code);
 END IF;
END;

DELETE_MAIL_FILE
Use this method to delete files created using CREATE_MAIL_FILE procedure.
 Note: DELETE_MAIL_FILE is supported only in Oracle 9i and later.

Definition

 PROCEDURE db_mail.delete_mail_file(
 file_name VARCHAR2)

Argument Max size;
Value range

Description

File_Name 255 Name of the file to delete. File name should not include file path. The file
must exist on the database server computer. The actual file location is
specified by SYSTEM.MAILSTORE directory object.

Return values:

None. Oracle procedures do not return values.

If an error occurs one of the predetermined exceptions is raised. In case if an exception is caught check
Oracle SQLERRM session variable to obtain the error description.

CHAPTER 6, Sending email messages

 - 83 -

 Usage Tips:

• If you use CREATE_MAIL_FILE to write a file attachment for the ATTACH_FILE function or to
write a fax file for the SEND_FAX or SEND_FAX_EX functions and you do not need that file after
calling one of the Send methods you can delete it using DELETE_MAIL_FILE procedure. Please
note that DELETE_MAIL_FILE function is only available in Oracle 9i version and later. If you are
running Oracle 8 or Oracle8i you cannot delete files from within a database procedure or function.
Instead you should schedule a periodic operation system job to delete temporary files created
with CREATE_MAIL. When deleting files be careful to not delete files that have been written
already but not loaded yet. To avoid this timing issue delete only files that are older than a few
hours.

Examples

See example 2 available in the CREATE_MAIL_FILE topic.

Microsoft SQL Server

SendMail
Use this method to send email messages from your database. The definition of SendMail function is
shown below:

Definition

PROCEDURE dbmail.SendMail(
 @recipients VARCHAR(8000),
 @subject VARCHAR(255),
 @message VARCHAR(8000),
 @reply_to VARCHAR(255)= NULL,
 @content_type VARCHAR(50) = 'text/plain',
 @priority INT = 1,
 @attachment_id INT = NULL)

Argument Max Size;
Value Range

Description

Recipients 8000 Email address of message recipient. If you need to send the same
message to multiple recipients, use comma to separate multiple recipient
addresses. You can also specify valid email user groups. Email groups
(also known as D-Lists or Distribution Lists) can be configured using your
mail server administration tools.

Subject 255 Email message subject

Message 8000 Email message text.

 Tip: If you need to send a message whose text is longer than the
maximum size of varchar data-type in your database you can use a
special attachment file with the name message and no extension. DB
Mail will use the contents of that file for the message text. The value of
the Message parameter will be ignored in that case. For more

CHAPTER 6, Sending email messages

 - 84 -

information see Error! Not a valid result for table. topic.

Reply-to
(optional)

255 Sender's email address. Note that this property is used with SMTP
interface only. Your server must support relay forwarding if you want to
set the sender's email address to a value different from the one specified
in the DB Mail email configuration. When using MAPI and Lotus Notes
interfaces, DB Mail ignores this property. Also note that for both MAPI
and Lotus Notes, your email messages will have sender's address
specified in the profile of the user whose account you used to configure
DB Mail Server mail options.

Content_Type
(optional)

50 Message content type is one of text/plain, text/html, text/xml. Note that
this property is used with SMTP interface only. When using MAPI and
Lotus Notes interfaces, DB Mail ignores this property. If you specify
NULL or omit this parameter, DB Mail uses the default value, which is
text/plain.

Priority (optional) 0..2 Message processing takes a value of 0, 1, or 2. Note that this property is
used only when Message Queuing is enabled in DB Mail options.
Messages having higher priority numbers are processed before
messages having lower priority numbers. Email messages sent using
SMTP protocol also inherit this priority attribute.

Attachment_ID
(optional)

 ID of the record or group of records in the MAIL_ATTACH table
containing attachment data. Message attachment should be created
using AttachFile and AttachData methods.

Return values: Returns unique message ID or returns -1 if an error occurs.

 Usage Tips:

Use the @@ERROR global variable to check for errors. @@ERROR is set to 0 if the procedure
executed successfully. If an error occurs, a non-zero number is returned. @@ERROR returns the
number of the error message until another Transact-SQL statement is executed. You can view the text
associated with an @@ERROR error number in the SYSMESSAGES system table.

Examples

The following examples demonstrate how to send email messages using DB Mail functions.

Example 1:

The following EXECUTE statement will send email to all users who run batch jobs and whose database
password is going to expire next Monday. This assumes that the BATCH_USER table contains the
EXPIRE_DATE, the USERID and FNAME columns, which represent the expiry date of the password,
the Mail email user id and the full user name.

EXEC master.dbmail.SendMail 'batch_users@domain.com',
 'Password expiration',
 'Attention batch job owners, your database password will
 expire in 3 days. Be sure to update your batch jobs before
 that date. If you need assistance, reply to this message
 with your questions',
 'helpdesk@domain.com',
 'text/plain'

CHAPTER 6, Sending email messages

 - 85 -

Example 2:

In this example we create user defined scalar function callable from various SQL statement just like
other built-in system functions. Using this function we will send email to all users who run batch jobs
and whose database passwords are going to expire next Monday. This example assumes that the
BATCH_USER table contains the EXPIRE_DATE, the USERID and FNAME columns, which represent
the expiry date of the password, the email user id and the full user name.

-- First, let's create a user-defined scalar Transact-SQL function that
-- we can call from SELECT statements
CREATE FUNCTION mySendMail(@recipient VARCHAR(30),
 @subject VARCHAR(255),
 @message VARCHAR(8000))
RETURNS INT
AS
BEGIN
 DECLARE @ret INT
 EXEC @ret = master.dbmail.SendMail @recipient, @subject,
 @message, 'helpdesk@domain.com'

 RETURN (@ret)

END
go

-- Now, we can call our own send mail function
SELECT mySendMail(userid + '@domain.com',
 'Password expiration',
 'Dear ' + fname + ',' + char(10) + char(10) +
 'Your database password will expire next Monday. ' +
 'Be sure to update your batch jobs before that date.' + char(10)
 + char(10) +
 'If you need assistance, reply to this message with ' +
 'your questions')
FROM batch_user
WHERE expire_date =
 DateAdd(DAY, 3, convert(datetime, convert(varchar, GetDate(), 101)))

go

Example 3:

This is a more advanced T-SQL example of a similar use of the dbmail.SendMail function:

/***
* This procedure debits the specified account by specified amount
* only if there are sufficient funds to cover the withdrawal, and if there
* are not, it sends an email alert to the account manager.
* This function returns new account balance.
***/
CREATE PROCEDURE sp_acct_debit (@acct_nbr CHAR(10), @debit_amt MONEY)
AS
BEGIN
 DECLARE
 @acct_balance MONEY,
 @ret_code INTEGER
 SET @ret_code = -1

 SELECT @acct_balance = balance
 FROM accounts
 WHERE acct = @acct_nbr

CHAPTER 6, Sending email messages

 - 86 -

 IF @acct_balance >= @debit_amt
 BEGIN
 SET @acct_balance = @acct_balance - @debit_amt
 UPDATE accounts
 SET balance = @acct_balance
 WHERE acct = @acct_nbr

 IF @@error = 0 SET @ret_code = 1 -- success
 END
 ELSE
 -- Insufficient funds.
 -- Send email notification to the account manager
 DECLARE @email VARCHAR(50),
 @message VARCHAR(200)

 SELECT @email = m.email,
 @message = 'Time: ' + convert(varchar, GetDate()) + char(10) +
 'Account: ' + convert(varchar, @acct_nbr)
 FROM managers m, accounts a
 WHERE m.mgr_id = a.mgr_id
 AND a.acct = @acct_nbr

 EXEC @rec_code = master.dbmail.SendMail @email,
 'WARNING: Insufficient funds',
 @message

 -- If email was sent successfully set ret_code to 0,
 -- otherwise leave it as -1
 IF @ret_code = 1 SET @ret_code = 0 ELSE SET @retcode = -1
 END

 RETURN (@ret_code) -- return code 1 indicates success
 -- 0 indicates insufficient funds and
 -- successful notice
 -- -1 indicates insufficient funds and failed
 -- notice
END

Example 4 (sending email in HTML format):

The following EXECUTE statement will send emails to batch_users email group which includes users
who run batch jobs. It uses HTML rather than plain text – note the use of the ‘text/html’ content type
description:

EXEC master.dbmail.SendMail 'batch_users@domain.com',
 'Password expiration',
 '<p>Attention batch job owners,</p>
 <p>Your database password will expire in 3 days.
 Be sure to update your batch jobs before that date.</p>
 <p>If you need assistance,
 reply to this message with your questions</p>,
 'helpdesk@domain.com',
 'text/html'

AttachFile
Use this method to attach external files to email messages sent using dbmail.SendMail procedure. To

CHAPTER 6, Sending email messages

 - 87 -

attach data already stored inside the database in TEXT and IMAGE columns, use the AttachData
procedure. The definition of AttachFile procedure is shown below:

Definition

 PROCEDURE dbmail.AttachFile(
 @id INT = NULL,
 @file_name VARCHAR(255))

Argument Max size;
Value range

Description

ID Attachment group ID.

In order to generate unique Attachment IDs, pass NULL as a parameter
when calling AttachData or AttachFile for the first time for every email
message. The called procedure will return a unique ID that you must use in
subsequent calls when attaching more files or data to the same message.

File_Name 255 Name of the attached file as it will appear in the email message. The name
must conform to standard file naming conventions and may include file path.
File name must be unique within single email message.

Return values: Returns unique attachment group ID or returns -1 if an error occurs.

Important Note: New attachment group ID is returned if NULL is passed for the ID argument,
otherwise the value of the ID argument is returned.

 Usage Tips:

• If you want to attach more then one external file, call the AttachFile procedure as many times as
many files you want to add.

• To attach data already stored inside the database in TEXT and IMAGE columns, use the
AttachData procedure.

• To attach both external files and data, call both procedures as many times as there are
attachments you want to add. Note that every attachment will appear as a file in the resulting
email message. Names of files in the resulting message will match names of files that you have
specified as arguments for the procedures.

 Important notes:

• DB Mail temporarily stores all attachments in the MAIL_ATTACH table. One message can have
up to 255 attachments. Every message must have a unique Attachment ID referencing
attachments that belong to that message. Within this group of records referenced by the
Attachment ID, every individual attachment must have a unique File ID and File Name. Both
Attachment ID and File ID are used as the surrogate key.

• DB Mail automatically deletes all attachments from the MAIL_ATTACH table after the message is
sent or queued for sending.

CHAPTER 6, Sending email messages

 - 88 -

• You must create separate attachments for every email message. To send an identical message to
multiple recipients either send it to a user group using group name as recipient address or specify
all recipients as a comma-separated list. The maximum length of the list is limited by the size of
VARCHAR variable in your SQL Server version (normally 8000 characters). Only one copy of
attachments is needed in both cases. In all other cases you must create separate messages with
separate attachments for every recipient.

Examples

The following examples demonstrate how to send email messages with attachments using DB Mail
procedures. Here are several brief examples for attaching an external file and data from IMAGE
columns.

Example 1 (1 message, 1 file attachment):

DECLARE @attach_id INTEGER

EXEC @attach_id = master.dbmail.AttachFile NULL, 'c:\images\product.gif'

EXEC master.dbmail.SendMail 'user@domain.com',
 'Test message with attachments',
 'This message has one attachment',
 NULL,
 NULL,
 NULL,
 @attach_id

Example 2 (1 message, 3 file attachments):

DECLARE @attach_id INTEGER

EXEC @attach_id = master.dbmail.AttachFile NULL, 'c:\images\product1.gif'
EXEC master.dbmail.AttachFile @attach_id, 'c:\images\product2.gif'
EXEC master.dbmail.AttachFile @attach_id, 'c:\images\products3.gif'

EXEC master.dbmail.SendMail 'user@domain.com',
 'Test message with attachments',
 'This message has three attachments',
 NULL,
 NULL,
 NULL,
 @attach_id

Example 3 (1 message, 1 BLOB attachment):

DECLARE @attach_id INTEGER
DECLARE @data_length INT
DECLARE @ptrval BINARY(16)

-- read blob value from a table
SELECT @data_length = DATALENGTH(blob_column),
 @ptrval = TEXTPTR(blob_column)
FROM images_table
WHERE image_id = 21

READTEXT images_table. blob_column @ptrval 1 @data_length

-- pass that value to the AttachData procedure

CHAPTER 6, Sending email messages

 - 89 -

EXECUTE @attach_id = master.dbmail.AttachData NULL, 'product.gif', @ptrval

-- now, mail it
EXEC master.dbmail.SendMail 'user@domain.com',
 'Test message with attachments',
 'This message has one attachment',
 NULL,
 NULL,
 NULL,
 @attach_id

Example 4 (1 message, 3 BLOB attachments):

DECLARE @attach_id INTEGER
DECLARE @data_length INT
DECLARE @ptrval BINARY(16)

-- read first blob value from a table
SELECT @data_length = DATALENGTH(image_col),
 @ptrval = TEXTPTR(image_col)
FROM images_table
WHERE image_id = 1

READTEXT images_table.image_col @ptrval 1 @data_length

-- pass that value to the AttachData procedure
EXEC @attach_id = master.dbmail.AttachData NULL, 'product.gif', @ptrval

-- read second blob value from a table
SELECT @data_length = DATALENGTH(image_col),
 @ptrval = TEXTPTR(image_col)
FROM images_table
WHERE image_id = 2

READTEXT images_table.image_col @ptrval 1 @data_length

-- pass that value to the AttachData procedure
EXEC master.dbmail.AttachData @attach_id, 'product2.gif', @ptrval

-- read third blob value from a table
SELECT @data_length = DATALENGTH(image_col),
 @ptrval = TEXTPTR(image_col)
FROM images_table
WHERE image_id = 3

READTEXT images_table.image_col @ptrval 1 @data_length

-- pass that value to the AttachData procedure
EXEC master.dbmail.AttachData @attach_id, 'product3.gif', @ptrval

-- now, mail it
EXEC master.dbmail.SendMail 'user@domain.com',
 'Test message with attachments',
 'This message has one attachment',
 NULL,
 NULL,
 NULL,
 @attach_id

CHAPTER 6, Sending email messages

 - 90 -

Example 5 (many messages, 1 attachment):

-- First, let's create a user-defined scalar Transact-SQL function that
-- we can call from SELECT statements
CREATE FUNCTION mySendMail(@recipient VARCHAR(30),
 @subject VARCHAR(255),
 @message VARCHAR(8000),
 @file_name VARCHAR(255))
RETURNS INT
AS
BEGIN
 DECLARE @attach_id INTEGER
 DECLARE @ret INT
 EXEC @attach_id = master.dbmail.AttachFile NULL, @file_name

 EXEC @ret = master.dbmail.SendMail @recipient, @subject,
 @message, 'custservice@domain.com',
 0, @attach_id

 RETURN (@ret)

END
go

-- Now, we can call our own send mail function

SELECT mySendMail(customer_email,
 'New great product in our store',
 'We are happy to offer the product that you have asked for.' +
 'For details please see the attached picture.',
 'product.gif')
FROM customer
WHERE customer_email IS NOT NULL
 AND status = 'A';
go

AttachData
Use this method to attach data already stored inside the database in TEXT and IMAGE columns to
email messages sent using SendMail procedure. To attach external files, use the AttachFile procedure.
The definition of AttachData procedure is shown below:

Definition

 PROCEDURE dbmail.AttachData(
 @id NUMBER = NULL,
 @file_name VARCHAR(255),
 @data IMAGE)

Argument Max size;
Value range

Description

ID Attachment group ID.

In order to generate unique Attachment IDs, pass NULL as a parameter
when calling AttachData or AttachFile for the first time for every email
message. The called procedure will return a unique ID that you must use in

CHAPTER 6, Sending email messages

 - 91 -

subsequent calls when attaching more files or data to the same message.

File_Name 255 Name of the attached file as it will appear in the email message. The name
must conform to standard file naming conventions and should not include
the file path. The file name must be unique within a single email message.

Data 2GB BLOB value (IMAGE) containing the actual attachment data.

Return values: Returns unique attachment group ID or returns -1 if an error occurs.

 Important Note: New attachment group ID is returned if NULL is passed for the ID argument,
otherwise the value of the ID argument is returned.

 Usage Tips:

• If you want to attach more then one BLOB, call the AttachData procedure as many times as many
BLOB values you want to add.

• To attach external files, use the AttachFile procedure.

• To attach both external files and data, call both procedures as many times as there are
attachments you want to add. Note that every attachment will appear as a file in the resulting
email message. Names of files in the resulting message will match names of files that you have
specified as arguments for the functions.

 Important notes:

• DB Mail temporarily stores all attachments in the MAIL_ATTACH table. One message can have
up to 255 attachments. Every message must have a unique Attachment ID referencing
attachments that belong to that message. Within this group of records referenced by the
Attachment ID, every individual attachment must have a unique File ID and File Name. Both
Attachment ID and File ID are used as the surrogate key.

• DB Mail automatically deletes all attachments from the MAIL_ATTACH table after the message is
sent or queued for sending.

• You must create separate attachments for every email message. To send an identical message to
multiple recipients either send it to a user group using group name as recipient address or specify
all recipients as a comma-separated list. The maximum length of the list is limited by the size of
VARCHAR variable in your SQL Server version (normally 8000 characters). Only one copy of
attachments is needed in both cases. In all other cases you must create separate messages with
separate attachments for every recipient.

Examples

See examples for the AttachFile procedure that also includes examples for the AttachData procedure.

CHAPTER 6, Sending email messages

 - 92 -

CreateMailFile
Use this method to write various flat files to be attached to email messages or used with DB Mail fax
procedures. The definition of CreateMailFile procedure is shown below:

Definition

 PROCEDURE dbmail.CreateMailFile(
 @file_name VARCHAR(255),
 @text VARCHAR(8000),
 @append INT)

Argument Max size;
Value range

Description

File_Name 255 Name of the file to write to. Make sure to specify full file name including
path. If you omit the path DB Mail will create the specified file in the current
directory which normally SQL Server's BINN directory.

Text 8000 Text to write to the file specified by the File_Name argument.

Append 0..1 Value of the Append argument specifies whether to create a new file or
append value of the Text argument to an existing file. If a value of 0 is
passed for the Append argument and the file already exists, CreateMailFile
overwrites the existing file. If a value of 1 is passed for the Append
argument and the file does not exist, CreateMailFile fails and an application
error is raised.

Return values: 0 or positive number is returned if the procedure successfully completed. A negative
number is retuned if a file cannot be written.

 Usage Tips:

• Use the @@ERROR global variable to check for errors. @@ERROR is set to 0 if the procedure
executed successfully. If an error occurs, a non-zero number is returned. @@ERROR returns the
number of the error message until another Transact-SQL statement is executed. You can view the
text associated with an @@ERROR error number in the SYSMESSAGES system table.

• Call CreateMailFile as many times for as many chunks of text you want to write to the file.

• When calling CreateMailFile for the first time to write the very first chunk of text, specify 0 for the
Append parameter. In subsequent calls specify 1.

• If you use CreateMailFile to write a file attachment for the AttachFle procedure or to write a fax file
for the SendFax or SendFaxEx procedure and you do not need that file after calling one of the
Send methods, you can delete it using DeleteMailFile procedure.

Examples

Example 1 (create email attachment):

DECLARE @attach_id INTEGER

CHAPTER 6, Sending email messages

 - 93 -

EXEC master.dbmail.CreateMailFile 'c:\temp\report.htm',
 '<html><title>Test Report</title><body>
 <h2>Test Report</h2><hr>
 <table><tr><th bgcolor=black>Col 1</th>
 <th bgcolor=black>Col 2</th></tr>
 <tr><td>Value A</td><td align=right>1</td></tr>
 <tr><td>Value B</td><td align=right>2</td></tr>
 </table></body></html>', 0

EXEC @attach_id = master.dbmai.AttachFile NULL, 'c:\temp\report.htm'

EXEC master.dbmail.DeleteMailFile 'c:\temp\report.htm'

EXEC master.dbmail.SendMail('me@mycompany.com',
 'Test message with attachments',
 'The test report is attached. Please ignore this message.',
 'myname@mycompany.com',
 'text/plain',
 1,
 @attach_id

Example 2 (create fax document):

DECLARE @attach_id INTEGER

EXEC master.dbmail.CreateMailFile 'c:\temp\report.htm',
 '<html><title>Test Report</title><body>
 <h2>Test Report</h2><hr>
 <table><tr><th bgcolor=black>Col 1</th>
 <th bgcolor=black>Col 2</th></tr>
 <tr><td>Value A</td><td align=right>1</td></tr>
 <tr><td>Value B</td><td align=right>2</td></tr>
 </table></body></html>', 0

EXEC master.dbmail.SendFax '+1 (123) 222-3344',
 'Test fax subject',
 'c:\temp\report.htm',
 TRUE,
 'Generic',
 'Test recipient'

EXEC master.dbmail.DeleteMailFile 'c:\temp\report.htm'

DeleteMailFile
Use this method to delete files created using the CreateMailFile procedure.

Definition

 PROCEDURE dbmail.DeleteMailFile(
 @file_name VARCHAR(255))

CHAPTER 6, Sending email messages

 - 94 -

Argument Max size;
Value range

Description

File_Name 255 Name of the file to delete. Make sure to specify full file name including path.

Return values: 0 or positive number is returned if procedure successfully completed. A negative
number is retuned if a file cannot be written.

 Usage Tips:

Use the @@ERROR global variable to check for errors. @@ERROR is set to 0 if the procedure
executed successfully. If an error occurs, a non-zero number is returned. @@ERROR returns the
number of the error message until another Transact-SQL statement is executed. You can view the text
associated with an @@ERROR error number using the SYSMESSAGES system table

Examples

See examples available in the CreateMailFile topic.

Sybase SQL Server, ASE, ASA

SendMail
Use this method to send email messages from your database. The definition of SendMail function is
shown below:

Definition

PROCEDURE dbmail.SendMail(
 @recipients VARCHAR(255),
 @subject VARCHAR(255),
 @message VARCHAR(255),
 @reply_to VARCHAR(255),
 @content_type VARCHAR(50),
 @priority INT,
 @attachment_id INT,
 OUT @SQLMessage VARCHAR(255),
 OUT @result INT)

Argument Max Size;
Value Range

Description

Recipients 255 Email address of message recipient. If you need to send the same
message to multiple recipients, use comma to separate multiple recipient
addresses. You can also specify valid email user groups. Email groups
(also known as D-Lists or Distribution Lists) can be configured using your

CHAPTER 6, Sending email messages

 - 95 -

mail server administration tools.

Subject 255 Email message subject

Message 255 Email message text.

 Tip: If you need to send a message whose text is longer than the
maximum size of varchar data-type in your database you can use a
special attachment file with the name message and no extension. DB
Mail will use the contents of that file for the message text. The value of
the Message parameter will be ignored in that case. For more
information see Error! Not a valid result for table. topic.

Reply-to
(optional)

255 Sender's email address. Note that this property is used with SMTP
interface only. Your server must support relay forwarding if you want to
set the sender's email address to a value different from the one specified
in the DB Mail email configuration. When using MAPI and Lotus Notes
interfaces, DB Mail ignores this property. Also, note that for both MAPI
and Lotus Notes, your email messages will have sender's address
specified in the profile of the user whose account you used to configure
DB Mail Server mail options.

Content_Type
(optional)

50 Message content type is one of text/plain, text/html, text/xml. Note that
this property is used with SMTP interface only. When using MAPI and
Lotus Notes interfaces, DB Mail ignores this property. If you specify
NULL or omit this parameter, DB Mail uses the default value, which is
text/plain.

Priority (optional) 0..2 Message processing priority takes a value of 0, 1, or 2. Note that this
property is used only when Message Queuing is enabled in DB Mail
options. Messages having higher priority numbers are processed before
messages having lower priority numbers. Email messages sent using
SMTP protocol also inherit this priority attribute.

Attachment_ID
(optional)

 ID of the record or group of records in the MAIL_ATTACH table
containing attachment data. Message attachment should be created
using AttachFile and AttachData methods.

SQLMessage 255 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique message ID for the sent message (a positive number) if the procedure
completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

Examples

The following examples demonstrate how to send email messages using DB Mail functions.

CHAPTER 6, Sending email messages

 - 96 -

Example 1:

The following EXECUTE statement will send email to all users who run batch jobs and whose database
password is going to expire next Monday. This assumes that the BATCH_USER table contains the
EXPIRE_DATE, the USERID and FNAME columns, which represent the expiry date of the password,
the Mail email user id and the full user name.

DECLARE @Ret INT, @ErrMessage VARCHAR(255)
EXEC sybsystemprocs.dbmail.SendMail 'batch_users@domain.com',
 'Password expiration',
 'Attention batch job owners, your database password will
 expire in 3 days. Be sure to update your batch jobs before
 that date. If you need assistance, reply to this message
 with your questions',
 'helpdesk@domain.com',
 'text/plain', 1, 0, @ErrMessage, @Ret

Example 2:

This is a more advanced T-SQL example of a similar use of the dbmail.SendMail function:

/***
* This procedure debits the specified account by specified amount
* only if there are sufficient funds to cover the withdrawal, and if there
* are not, it sends an email alert to the account manager.
* This function returns new account balance.
***/
CREATE PROCEDURE sp_acct_debit (@acct_nbr CHAR(10), @debit_amt MONEY)
RETURNS INTEGER
AS
BEGIN
 DECLARE @acct_balance MONEY, @ret_code INTEGER
 SELECT @ret_code = -1

 SELECT @acct_balance = balance
 FROM accounts
 WHERE acct = @acct_nbr

 IF @acct_balance >= @debit_amt
 BEGIN
 SELECT @acct_balance = @acct_balance - @debit_amt
 UPDATE accounts
 SET balance = @acct_balance
 WHERE acct = @acct_nbr

 IF @@error = 0 SELECT @ret_code = 1 -- success
 END
 ELSE
 -- Insufficient funds.
 -- Send email notification to the account manager
 DECLARE @email VARCHAR(50), @message VARCHAR(200)
 DECLARE @Ret INT, @ErrMessage VARCHAR(255)

 SELECT @email = m.email,
 @message = 'Time: ' + convert(varchar, GetDate()) + char(10) +
 'Account: ' + convert(varchar, @acct_nbr)
 FROM managers m, accounts a
 WHERE m.mgr_id = a.mgr_id
 AND a.acct = @acct_nbr

CHAPTER 6, Sending email messages

 - 97 -

 EXEC sybsystemprocs.dbmail.SendMail @email,
 'WARNING: Insufficient funds',
 @message, 'text/plain',
 'custservice@bank.com',
 1, 0, @ErrMessage, @Ret

 -- If email was sent successfully set ret_code to 0,
 -- otherwise leave it as -1
 IF @Ret = 1 SELECT @ret_code = 0 ELSE SELECT @retcode = -1
 END

 RETURN (@ret_code) -- return code 1 indicates success
 -- 0 indicates insufficient funds and
 -- successful notice
 -- -1 indicates insufficient funds and failed
 -- notice
END

Example 3 (sending email in HTML format):

The following EXECUTE statement will send emails to batch_users email group which includes users
who run batch jobs. It uses HTML rather than plain text – note the use of the ‘text/html’ content type
description:

DECLARE @Ret INT, @ErrMessage VARCHAR(255)
EXEC sybsystemprocs.dbmail.SendMail 'batch_users@domain.com',
 'Password expiration',
 '<p>Attention batch job owners,</p>
 <p>Your database password will expire in 3 days.
 Be sure to update your batch jobs before that date.</p>
 <p>If you need assistance,
 reply to this message with your questions</p>,
 'helpdesk@domain.com',
 'text/html', 1, 0, @ErrMessage, @Err

AttachFile
Use this method to attach virtual files to email messages sent using the dbmail.SendMail procedure.

 Important Note: Because Sybase does not currently support any methods for reading external
files from database Transact-SQL and Java procedures, the DB Mail implementation for Sybase
databases also does not support attaching external files directly.

As an alternative, you can write Sybase client programs to load external files into TEXT or IMAGE
columns stored in database tables and then use the AttachData method to attach loaded files to
messages. Such programs can be written in C, Java and a variety of other development systems.
A number of examples of such programs are available on the Sybase web site and on the Internet.

Another alternative for writing and attaching text files is to use the AttachFile method together with
the CreateMailFile method. The CreateMailFile method can be used to write virtual files stored in
pieces in the MAIL_FILE database table. Then the AttachFile method can be used to attach such
files to a email message sent using SendMail procedure.

 The definition of AttachFile procedure is shown below:

CHAPTER 6, Sending email messages

 - 98 -

Definition

PROCEDURE dbmail.AttachFile(
 @id INT = NULL,
 @file_name VARCHAR(255),
 OUT @SQLMessage VARCHAR(255),
 OUT @result INT)

Argument Max size;
Value range

Description

ID Attachment group ID.

In order to generate unique Attachment IDs, pass NULL as a parameter
when calling ATTACH_DATA or ATTACH_FILE for the first time for every
email message. The called procedure will return a unique ID that you must
use in subsequent calls when attaching more files or data to the same
message.

File_Name 255 Name of the attached file as it will appear in the email message. The name
must conform to standard file naming conventions and should not include
the file path. File name must be unique within single email message.

File must be created using CreateMailFile procedure.

File names are case –sensitive.

SQLMessage 255 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique attachment group ID (a positive number) if the procedure completes
successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

 Important Note: The New attachment group ID is returned if NULL is passed for the ID argument,
otherwise the value of the ID argument is returned.

 Usage Tips:

• If you want to attach more then one file, call the AttachFile procedure as many times for as many
files you want to add.

• To attach data already stored inside the database in TEXT and IMAGE columns, use the
AttachData procedure.

• To attach both virtual files and data, call both procedures as many times as there are attachments
you want to add. Note that every attachment will appear as a file in the resulting email message.
Names of files in the resulting message will match names of files that you have specified as
arguments for the procedures.

CHAPTER 6, Sending email messages

 - 99 -

 Important notes:

• DB Mail temporarily stores all attachments in the MAIL_ATTACH table. One message can have
up to 255 attachments. Every message must have a unique Attachment ID referencing
attachments that belong to that message. Within this group of records referenced by the
Attachment ID, every individual attachment must have a unique File ID and File Name. Both
Attachment ID and File ID are used as the surrogate key.

• DB Mail automatically deletes all attachments from the MAIL_ATTACH table after the message is
sent or queued for sending.

• You must create separate attachments for every email message. To send an identical message to
multiple recipients either send it to a user group using group name as recipient address or specify
all recipients as a comma-separated list. The maximum length of the list is limited by the size of
VARCHAR variable in your Sybase database version (normally 255 characters). Only one copy of
attachments is needed in both cases. In all other cases you must create separate messages with
separate attachments for every recipient.

Examples

The following examples demonstrate how to send email messages with attachments using DB Mail
procedures. Here are several brief examples for attaching an external file and data from IMAGE
columns.

Example 1 (1 message, 1 file attachment):

DECLARE @attach_id INTEGER
DECLARE @Ret INT, @ErrMessage VARCHAR(255)

EXEC sybsystemprocs.dbmail.AttachFile NULL,
 'c:\images\product.gif',
 @ErrMessage, @attach_id

EXEC sybsystemprocs.dbmail.SendMail 'user@domain.com',
 'Test message with attachments',
 'This message has one attachment',
 'myname@domain.com',
 'text/plain', 0, @attach_id, @ErrMessage, @Err

Example 2 (1 message, 3 file attachments):

DECLARE @attach_id INTEGER
DECLARE @Ret INT, @ErrMessage VARCHAR(255)

EXEC sybsystemprocs.dbmail.AttachFile NULL,
 'c:\images\product1.gif',
 @ErrMessage, @attach_id
EXEC sybsystemprocs.dbmail.AttachFile @attach_id,
 'c:\images\product2.gif',
 @ErrMessage, @Err
EXEC sybsystemprocs.dbmail.AttachFile @attach_id,
 'c:\images\products3.gif',
 @ErrMessage, @Err

EXEC sybsystemprocs.dbmail.SendMail 'user@domain.com',
 'Test message with attachments',
 'This message has three attachments',
 'myname@domain.com',

CHAPTER 6, Sending email messages

 - 100 -

 'text/plain', 0, @attach_id, @ErrMessage, @Err

Example 3 (1 message, 1 BLOB attachment):

DECLARE @attach_id INTEGER
DECLARE @ptrval BINARY(16)
DECLARE @Ret INT, @ErrMessage VARCHAR(255)

-- read blob value from a table
SELECT @ptrval = TEXTPTR(image_col)
FROM images_table
WHERE image_id = 21

-- pass that value to the AttachData procedure
EXEC sybsystemprocs.dbmail.AttachData NULL,
 'product.gif', @ptrval,
 @ErrMessage, @attach_id

-- now, mail it
EXEC sybsystemprocs.dbmail.SendMail 'user@domain.com',
 'Test message with attachments',
 'This message has one attachment',
 'myname@domain.com',
 'text/plain', 0, @attach_id, @ErrMessage, @Err

Example 4 (1 message, 3 BLOB attachments):

DECLARE @attach_id INTEGER
DECLARE @ptrval BINARY(16)
DECLARE @Ret INT, @ErrMessage VARCHAR(255)

-- read first blob value from a table
SELECT @ptrval = TEXTPTR(image_col)
FROM images_table
WHERE image_id = 1

-- pass that value to the AttachData procedure
EXEC sybsystemprocs.dbmail.AttachData NULL,
 'product.gif', @ErrMessage, @attach_id

-- read second blob value from a table
SELECT @ptrval = TEXTPTR(image_col)
FROM images_table
WHERE image_id = 2

-- pass that value to the AttachData procedure
EXEC sybsystemprocs.dbmail.AttachData @attach_id,
 'product2.gif', @ErrMessage, @Err

-- read third blob value from a table
SELECT @ptrval = TEXTPTR(image_col)
FROM images_table
WHERE image_id = 3

-- pass that value to the AttachData procedure
EXEC sybsystemprocs.dbmail.AttachData @attach_id,
 'product3.gif', @ErrMessage, @Err

-- now, mail it

CHAPTER 6, Sending email messages

 - 101 -

EXEC sybsystemprocs.dbmail.SendMail 'user@domain.com',
 'Test message with attachments',
 'This message has one attachment',
 'myname@domain.com',
 'text/plain', 0, @attach_id, @ErrMessage, @Err

AttachData
Use this method to attach data already stored inside the database in TEXT and IMAGE columns to
email messages sent using SendMail procedure. To attach virtual files, use the AttachFile procedure.
The definition of AttachData procedure is shown below:

Definition

 PROCEDURE dbmail.AttachData(
 @id NUMBER,
 @file_name VARCHAR(255),
 @data_ptr VARBINARY(16),
 OUT @SQLMessage VARCHAR(255),
 OUT @result INT)

Argument Max size;
Value range

Description

ID Attachment group ID.

In order to generate unique Attachment IDs, pass NULL as a parameter
when calling AttachData or AttachFile for the first time for every email
message. The called procedure will return a unique ID that you must use in
subsequent calls when attaching more files or data to the same message.

File_Name 255 Name of the attached file as it will appear in the email message. The name
must conform to standard file naming conventions and should not include
the file path. File name must be unique within a single email message.

Data_ptr 16 Data pointer to BLOB value (TEXT or IMAGE) as returned by TEXTPTR
system function.

SQLMessage 255 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique attachment group ID (a positive number) if the procedure completes
successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

Important note: The New attachment group ID is returned if NULL is passed for the ID argument,
otherwise the value of the ID argument is returned.

CHAPTER 6, Sending email messages

 - 102 -

 Usage Tips:

• If you want to attach more then one BLOB, call the AttachData procedure as many times as many
BLOB values you want to add.

• To attach external files, use the AttachFile procedure.

• To attach both external files and data, call both procedures as many times as there are
attachments you want to add. Note that every attachment will appear as a file in the resulting
email message. Names of files in the resulting message will match names of files that you have
specified as arguments for the functions.

 Important notes:

• DB Mail temporarily stores all attachments in the MAIL_ATTACH table. One message can have
up to 255 attachments. Every message must have a unique Attachment ID referencing
attachments that belong to that message. Within this group of records referenced by the
Attachment ID, every individual attachment must have a unique File ID and File Name. Both
Attachment ID and File ID are used as the surrogate key.

• DB Mail automatically deletes all attachments from the MAIL_ATTACH table after the message is
sent or queued for sending.

• You must create separate attachments for every email message. To send an identical message to
multiple recipients either send it to a user group using group name as recipient address or specify
all recipients as a comma-separated list. The maximum length of the list is limited by the size of
VARCHAR variable in your Sybase database version (normally 255 characters). Only one copy of
attachments is needed in both cases. In all other cases you must create separate messages with
separate attachments for every recipient.

Examples

See examples for the AttachFile procedure that also includes examples for the AttachData procedure.

CreateMailFile
Use this method to create virtual text (TXT, HTML, XML, etc…) files stored internally in MAIL_FILE
table. Such virtual files can be attached to email messages and used with DB Mail fax procedures just
as if they were regular external files. The definition of CreateMailFile procedure is shown below:

Definition

 PROCEDURE dbmail.CreateMailFile(
 @file_name VARCHAR(255),
 @text VARCHAR(255),
 @append INT,
 OUT @SQLMessage VARCHAR(255),
 OUT @result INT)

CHAPTER 6, Sending email messages

 - 103 -

Argument Max size;
Value range

Description

File_Name 255 Name of the file to write to. Do not specify file path!

Text 255 Text to write to the file specified by the File_Name argument.

Append 0..1 Value of the Append argument specifies whether to create a new file or
append value of the Text argument to an existing file. If a value of 0 is
passed for the Append argument and the file already exists, CreateMailFile
overwrites the existing file. If a value of 1 is passed for the Append
argument and the file does not exist, CreateMailFile fails and application
error is raised.

SQLMessage 255 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns 1 if the procedure completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

 Usage Tips:

• Call CreateMailFile as many times as many chunks of text you want to write to the file. Because
Sybase' implementation of VARCHAR data-type is limited to 255 characters, the size of a single
chunk is also limited to 255 characters.

• When calling CreateMailFile for the first time to write the very first chunk of text, specify 0 for the
Append parameter. In subsequent calls specify 1.

• If you use CreateMailFile to write a file attachment for the AttachFile procedure or to write a fax
file for the SendFax or SendFaxEx procedure and you do not need that file after calling one of the
Send methods, you can delete it using DeleteMailFile procedure.

Examples

Example 1 (create email attachment):

DECLARE @Ret INT, @ErrMessage VARCHAR(255)
DECLARE @attach_id INTEGER
DECLARE @SampleReport VARCHAR(255)

-- create new file and write first chunk
SELECT @SampleReport =
 '<html><title>Test Report</title><body>' + char(10) +
 '<h2>Test Report</h2><hr>' + char(10) +
 '<table><tr><th bgcolor=black>Col 1</th>' +
 '<th bgcolor=black>Col 2</th></tr>' + char(10)
EXEC sybsystemprocs.dbmail.CreateMailFile

CHAPTER 6, Sending email messages

 - 104 -

 'report.htm', @SampleReport, 0, @ErrMessage, @Ret

-- append second chunk to the same file
 SELECT @SampleReport =
 '<tr><td>Value A</td><td align=right>1</td></tr>' + char(10) +
 '<tr><td>Value B</td><td align=right>2</td></tr>' + char(10) +
 '</table></body></html>'
EXEC sybsystemprocs.dbmail.CreateMailFile
 'report.htm', @SampleReport, 1, @ErrMessage, @Ret

 -- now, let's attach the entire file

EXEC @attach_id = sybsystemprocs.dbmai.AttachFile NULL,
 'report.htm', @ErrMessage, @Ret

-- we do not need this file anymore, let's delete it
EXEC sybsystemprocs.dbmail.DeleteMailFile
 'report.htm', @ErrMessage, @Ret

-- send mew email with the attached file
EXEC sybsystemprocs.dbmail.SendMail('me@mycompany.com',
 'Test message with attachments',
 'The test report is attached. Please ignore this message.',
 'myname@mycompany.com',
 'text/plain', 1, @attach_id, @ErrMessage, @Ret

Example 2 (create fax document):

DECLARE @Ret INT, @ErrMessage VARCHAR(255)
DECLARE @attach_id INTEGER
DECLARE @SampleReport VARCHAR(255)

-- create new file and write first chunk
SELECT @SampleReport =
 '<html><title>Test Report</title><body>' + char(10) +
 '<h2>Test Report</h2><hr>' + char(10) +
 '<table><tr><th bgcolor=black>Col 1</th>' +
 '<th bgcolor=black>Col 2</th></tr>' + char(10)
EXEC sybsystemprocs.dbmail.CreateMailFile
 'report.htm', @SampleReport, 0, @ErrMessage, @Ret

-- append second chunk to the same file
 SELECT @SampleReport =
 '<tr><td>Value A</td><td align=right>1</td></tr>' + char(10) +
 '<tr><td>Value B</td><td align=right>2</td></tr>' + char(10) +
 '</table></body></html>'
EXEC sybsystemprocs.dbmail.CreateMailFile
 'report.htm', @SampleReport, 1, @ErrMessage, @Ret

 -- now, let's send the fax

EXEC sybsystemprocs.dbmail.SendFax '+1 (123) 222-3344',
 'Test fax subject',
 'report.htm',
 TRUE,
 'Generic',
 'Test recipient',
 @ErrMessage, @Ret

-- we do not need this file anymore, let's delete it
EXEC sybsystemprocs.dbmail.DeleteMailFile
 'report.htm', @ErrMessage, @Ret

CHAPTER 6, Sending email messages

 - 105 -

DeleteMailFile
Use this method to delete virtual files created using CreateMailFile procedure.

Definition

 PROCEDURE dbmail.DeleteMailFile(
 @file_name VARCHAR(255),
 OUT @SQLMessage VARCHAR(255),
 OUT @result INT)

Argument Max size;
Value range

Description

File_Name 255 Name of the file to delete. Make sure to specify file name exactly as it was
specified with the CreateMailFile procedure. File names are case-sensitive.

SQLMessage 255 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns 1 if the procedure completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

Examples

See examples available in the CreateMailFile topic.

IBM DB2

SendMail
Use this method to send email messages from your database. The definition of SendMail function is
shown below:

Definition

PROCEDURE dbmail.SendMail(
 recipients VARCHAR(32672),
 subject VARCHAR(255),
 message VARCHAR(32672),

CHAPTER 6, Sending email messages

 - 106 -

 reply_to VARCHAR(255),
 content_type VARCHAR(50),
 priority INT,
 attachment_id INT,
 OUT SQLMessage VARCHAR(1000),
 OUT result INT)

Argument Max Size;
Value Range

Description

Recipients 32672 Email address of message recipient. If you need to send the same
message to multiple recipients, use comma to separate multiple recipient
addresses. You can also specify valid email user groups. Email groups
(also known as D-Lists or Distribution Lists) can be configured using your
mail server administration tools.

Subject 255 Email message subject

Message 32672 Email message text.

 Tip: If you need to send a message whose text is longer than the
maximum size of varchar data-type in your database you can use a
special attachment file with the name message and no extension. DB
Mail will use the contents of that file for the message text. The value of
the Message parameter will be ignored in that case. For more
information see Error! Not a valid result for table. topic.

Reply-to
(optional)

255 Sender's email address. Note that this property is used with SMTP
interface only. Your server must support relay forwarding if you want to
set the sender's email address to a value different from the one specified
in the DB Mail email configuration. When using MAPI and Lotus Notes
interfaces, DB Mail ignores this property. Also, note that for both MAPI
and Lotus Notes, your email messages will have sender's address
specified in the profile of the user whose account you used to configure
DB Mail Server mail options.

Content_Type
(optional)

50 Message content type is one of text/plain, text/html, text/xml. Note that
this property is used with SMTP interface only. When using MAPI and
Lotus Notes interfaces, DB Mail ignores this property. If you specify
NULL or omit this parameter, DB Mail uses the default value, which is
text/plain.

Priority (optional) 0..2 Message processing priority takes on a value of 0, 1, or 2. Note that this
property is used only when Message Queuing is enabled in DB Mail
options. Messages having higher number have higher priority and
processed before messages having lower priority. Email messages sent
using SMTP protocol also inherit this priority attribute.

Attachment_ID
(optional)

 ID of the record or group of records in the MAIL_ATTACH table
containing attachment data. Message attachment should be created
using AttachFile and AttachData methods.

SQLMessage 1000 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

CHAPTER 6, Sending email messages

 - 107 -

Return values:

Result returns unique message ID for the sent message (a positive number) if the procedure
completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

Examples

The following examples demonstrate how to send email messages using DB Mail functions.

Example 1:

The following CALL statement will send email to all users who run batch jobs and whose database
password is going to expire next Monday. This assumes that the BATCH_USER table contains the
EXPIRE_DATE, the USERID and FNAME columns, which represent the expiry date of the password,
the Mail email user id and the full user name.

DECLARE Ret INT;
DECLARE ErrMessage VARCHAR(1000);

CALL dbmail.SendMail('batch_users@domain.com',
 'Password expiration',
 'Attention batch job owners, your database password will
 expire in 3 days. Be sure to update your batch jobs before
 that date. If you need assistance, reply to this message
 with your questions',
 'helpdesk@domain.com',
 'text/plain', 1, 0, ErrMessage, Ret);

Example 2:

This is a more advanced example of a similar use of the dbmail.SendMail procedure:

/***
* This procedure debits the specified account by specified amount
* only if there are sufficient funds to cover the withdrawal, and if there
* are not, it sends an email alert to the account manager.
* This function returns new account balance.
***/
CREATE PROCEDURE sp_acct_debit (acct_nbr CHAR(10), debit_amt DECIMAL(11,2))
LANGUAGE SQL
BEGIN
 DECLARE acct_balance DECIMAL(11,2);
 DECLARE ret_code INTEGER;
 DECLARE email VARCHAR(50);
 DECLARE message VARCHAR(200);
 DECLARE errors VARCHAR(1000);

 SET ret_code = -1;

 SELECT balance
 INTO acct_balance
 FROM accounts
 WHERE acct = acct_nbr;

 IF acct_balance >= debit_amt THEN

CHAPTER 6, Sending email messages

 - 108 -

 SET acct_balance = acct_balance - debit_amt;

 UPDATE accounts
 SET balance = acct_balance
 WHERE acct = acct_nbr;

 IF @@error = 0 THEN SET @ret_code = 1; END IF; -- success
 ELSE
 -- Insufficient funds.
 -- Send email notification to the account manager

 SELECT m.email,
 'Time: ' || char(CURRENT DATE) || chr(10) ||
 'Account: ' || char(acct_nbr)
 INTO email, message
 FROM managers m, accounts a
 WHERE m.mgr_id = a.mgr_id
 AND a.acct = acct_nbr;

 CALL dbmail.SendMail(email,
 'WARNING: Insufficient funds',
 message, 'text/plain',
 'custservice@bank.com',
 1, 0, errors, ret_code);

 -- If email was sent successfully set ret_code to 0,
 -- otherwise leave it as -1
 IF ret_code = 1 THEN
 SET ret_code = 0;
 ELSE
 SET retcode = -1;
 END IF;
 END;

 RETURN ret_code; -- return code 1 indicates success
 -- 0 indicates insufficient funds and
 -- successful notice
 -- -1 indicates insufficient funds and failed
 -- notice
END

Example 3 (sending email in HTML format):

The following EXECUTE statement will send emails to batch_users email group which includes users
who run batch jobs. It uses HTML rather than plain text – note the use of the ‘text/html’ content type
description:

DECLARE @Ret INT, @ErrMessage VARCHAR(255)
EXEC dbmail.SendMail 'batch_users@domain.com',
 'Password expiration',
 '<p>Attention batch job owners,</p>
 <p>Your database password will expire in 3 days.
 Be sure to update your batch jobs before that date.</p>
 <p>If you need assistance,
 reply to this message with your questions</p>,
 'helpdesk@domain.com',
 'text/html', @ErrMessage, @Err

CHAPTER 6, Sending email messages

 - 109 -

AttachFile
Use this method to attach external files to email messages sent using the dbmail.SendMail procedure.

The definition of AttachFile procedure is shown below:

Definition

PROCEDURE dbmail.AttachFile(
 id INT,
 file_name VARCHAR(255),
 OUT SQLMessage VARCHAR(1000),
 OUT result INT)

Argument Max size;
Value range

Description

ID Attachment group ID.

In order to generate unique Attachment IDs, pass NULL as a parameter
when calling the AttachData or AttacheFile for the first time for every email
message. The called procedure will return a unique ID that you must use in
subsequent calls when attaching more files or data to the same message.

File_Name 255 Name of the attached file as it will appear in the email message. Name must
conform to standard file naming conventions and should not include file
path. File name must be unique within single email message.

SQLMessage 1000 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique attachment group ID (a positive number) if the procedure completes
successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

Important note: The New attachment group ID is returned if NULL is passed for the ID argument,
otherwise the value of the ID argument is returned.

 Usage Tips:

• If you want to attach more then one file, call the AttachFile procedure as many times for as many
files you want to add.

• To attach data already stored inside the database in BLOB columns, use the AttachData
procedure.

• To attach both virtual files and data, call both procedures as many times as there are attachments
you want to add. Note that every attachment will appear as a file in the resulting email message.
Names of files in the resulting message will match names of files that you have specified as
arguments for the procedures.

CHAPTER 6, Sending email messages

 - 110 -

 Important notes:

• DB Mail temporarily stores all attachments in the MAIL_ATTACH table. One message can have
up to 255 attachments. Every message must have a unique Attachment ID referencing
attachments that belong to that message. Within this group of records referenced by the
Attachment ID, every individual attachment must have a unique File ID and File Name. Both
Attachment ID and File ID are used as the surrogate key.

• DB Mail automatically deletes all attachments from the MAIL_ATTACH table after the message is
sent or queued for sending.

• You must create separate attachments for every email message. To send an identical message to
multiple recipients either send it to a user group using group name as recipient address or specify
all recipients as a comma-separated list. The maximum length of the list is limited by the size of
VARCHAR variable in your DB2 version (normally 32765 characters). Only one copy of
attachments is needed in both cases. In all other cases you must create separate messages with
separate attachments for every recipient.

Examples

The following examples demonstrate how to send email messages with attachments using DB Mail
functions. Here are brief examples for attaching an external file and data from BLOB columns.

Example 1 (DB2 SQL, 1 message, 1 file attachment):

BEGIN
 DECLARE attach_id INTEGER;
 DECLARE errors VARCHAR(1000);

 CALL dbmail.AttachFile(NULL, '/apps/images/product.gif',
 errors, attach_id);

 CALL dbmail.SendMail('user@domain.com',
 'Test message with attachments',
 'This message has one attachment',
 NULL, NULL, NULL, attach_id);
END

Example 2 (DB2 SQL, 1 message, 3 file attachments):

BEGIN
 DECLARE attach_id INTEGER;
 DECLARE errors VARCHAR(1000);

 CALL dbmail.AttachFile(NULL, '/apps/images/product1.gif',
 errors, attach_id);

 CALL dbmail.AttachFile(attach_id, '/apps/images/product2.gif',
 errors, attach_id);

 CALL dbmail.AttachFile(attach_id, '/apps/images/product3.gif',
 errors, attach_id);

 CALL dbmail.SendMail('user@domain.com',
 'Test message with attachments',
 'This message has three attachments',

CHAPTER 6, Sending email messages

 - 111 -

 NULL, NULL, NULL, attach_id);
END

Example 3 (DB2 SQL, 1 message, 1 BLOB attachment):

BEGIN
 DECLARE attach_id INTEGER;
 DECLARE errors VARCHAR(1000);
 DECLARE data BLOB(1M);

 SELECT image INTO data
 FROM scan_documents
 WHERE doc_type = 'INVOICE' AND doc_key = 1;

 CALL dbmail.AttachData(NULL, 'invoice1.gif', data,
 errors, attach_id);

 CALL dbmail.SendMail('user@domain.com',
 'Test message with attachments',
 'This message has one attachment',
 NULL, NULL, NULL, attach_id);
END

Example 4 (DB2 SQL, 1 message, 3 BLOB attachments):

BEGIN
 DECLARE attach_id INTEGER;
 DECLARE ret_code INTEGER;
 DECLARE errors VARCHAR(1000);
 DECLARE data BLOB(1M);

 SELECT image INTO data
 FROM scan_documents
 WHERE doc_type = 'INVOICE' AND doc_key = 1;

 CALL dbmail.AttachData(NULL, 'invoice1.gif', data,
 errors, attach_id);

 SELECT image INTO data
 FROM scan_documents
 WHERE doc_type = 'INVOICE' AND doc_key = 2;

 CALL dbmail.AttachData(attach_id, 'invoice2.gif', data,
 errors, attach_id);

 SELECT image INTO data
 FROM scan_documents
 WHERE doc_type = 'INVOICE' AND doc_key = 3;

 CALL dbmail.AttachData(attach_id, 'invoice3.gif', data,
 errors, attach_id);

 CALL dbmail.SendMail('user@domain.com',
 'Test message with attachments',
 'This message has 3 attachments',
 NULL, NULL, NULL, attach_id, errors, ret_code);
END

CHAPTER 6, Sending email messages

 - 112 -

Example 5 (DB2 SQL, many messages, 1 attachment):

BEGIN
 DECLARE attach_id INTEGER;
 DECLARE ret_code INTEGER;
 DECLARE errors VARCHAR(1000);
 DECLARE cust_email VARCHAR(100);
 DECLARE cust_name VARCHAR(100);

 DECLARE c1 CURSOR FOR
 SELECT customer_name, customer_email
 FROM customer
 WHERE customer_email IS NOT NULL
 AND status = 'A';
 /* Open cursor */
 OPEN c1;

 /* loop through all customer records */
 fetch_loop: LOOP

 /* fetch customer email and name
 FETCH c1 INTO cust_name, cust_email;
 IF (SQLCODE != 0) THEN LEAVE fetch_loop; END IF;

 /* create attachment */
 CALL dbmail.AttachFile(NULL, 'product.bmp', errors, attach_id) ;

 /* send message */
 CALL dbmail.SendMail(cust_email,
 'New great product in our store',
 'Dear ' || cust_name || ', ' || chr(10) || chr(10) ||
 'We are happy to offer the product that you have asked for.' ||
 'For details please see the attached picture.'
 'sales@ourcompany.com',
 'text/plain', 0, attach_id, errors, ret_code);
 LOOP;

 CLOSE c1;
END

AttachData
Use this method to attach data already stored inside the database in BLOB columns to email messages
sent using SendMail procedure. To attach virtual files, use the AttachFile procedure. The definition of
AttachData procedure is shown below:

Definition

PROCEDURE dbmail.AttachData(
 id NUMBER,
 file_name VARCHAR(255),
 data BLOB(10M),
 UT SQLMessage VARCHAR(1000),
 OUT result INT)

CHAPTER 6, Sending email messages

 - 113 -

Argument Max size;
Value range

Description

ID Attachment group ID.

In order to generate unique Attachment IDs, pass NULL as a parameter
when calling AttachData or AttachFile for the first time for every email
message. The called function will return a unique ID that you must use in
subsequent calls when attaching more files or data to the same message.

File_Name 255 Name of the attached file as it will appear in the email message. The name
must conform to standard file naming conventions and should not include
the file path. File name must be unique within single email message.

Data 10M Data pointer to BLOB value.

SQLMessage 1000 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique attachment group ID (a positive number) if the procedure completes
successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

 Imporant Note: New attachment group ID is returned if NULL is passed for the ID argument,
otherwise the value of the ID argument is returned.

 Usage Tips:

• If you want to attach more then one blob, call the AttachData procedure as many times as many
BLOB values you want to add.

• To attach external files, use the AttachFile procedure.

• To attach both external files and data, call both procedures as many times as there are
attachments you want to add. Note that every attachment will appear as a file in the resulting
email message. Names of files in the resulting message will match names of files that you have
specified as arguments for the functions.

 Important notes:

• DB Mail temporarily stores all attachments in the MAIL_ATTACH table. One message can have
up to 255 attachments. Every message must have a unique Attachment ID referencing
attachments that belong to that message. Within this group of records referenced by the
Attachment ID every individual attachment must have a unique File ID and File Name. Both
Attachment ID and File ID are used as the surrogate key.

CHAPTER 6, Sending email messages

 - 114 -

• DB Mail automatically deletes all attachments after the message is sent or queued for sending.
You must create separate attachments for every email message to be sent. If you intend to send
an identical message to multiple recipients you should either send such message to a user group
or specify all recipients as a comma-separated list. The maximum length of the list is limited by
the size of VARCHAR variable in your DB2 version (normally 32762 characters). Otherwise, you
must create separate messages with separate attachments for every recipient.

Examples

See examples for the AttachFile procedure that also includes examples for the AttachData procedure.

CreateMailFile
Use this method to create flat files such as TXT, HTML, XML, etc… on the database server computer..
Created files can then be attached to email messages and used with DB Mail fax procedures. The
definition of CreateMailFile is shown below:

Definition

PROCEDURE dbmail.CreateMailFile(
 file_name VARCHAR(255),
 text VARCHAR(32672),
 append INT,
 OUT SQLMessage VARCHAR(1000),
 OUT result INT)

Argument Max size;
Value range

Description

File_Name 255 Name of the file to write to. Do not specify file path!

Text 32672 Text to write to the file specified by the File_Name argument.

Append 0..1 Value of the Append argument specifies whether to create a new file or
append value of the Text argument to an existing file. If a value of 0 is
passed for the Append argument and the file already exists, CreateMailFile
overwrites the existing file. If a value of 1 is passed for the Append
argument and the file does not exist, CreateMailFile fails an application error
is raised.

SQLMessage 1000 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns 1 if the procedure completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

CHAPTER 6, Sending email messages

 - 115 -

 Usage Tips:

• Call CreateMailFile as many times as many chunks of text you want to write to the file.

• When calling CreateMailFile for the first time to write the very first chunk of text, specify 0 for the
Append parameter. In subsequent calls specify 1.

• If you use CreateMailFile to write a file attachment for the AttachFile procedure or to write a fax
file for the SendFax or SendFaxEx procedure and you do not need that file after calling one of the
Send methods you can delete it using DeleteMailFile procedure.

Examples

Example 1 (DB2 SQL; create email attachment):

BEGIN
 DECLARE attach_id INTEGER;
 DECLARE ret_code INTEGER;
 DECLARE errors VARCHAR(1000);
 DECLARE report VARCHAR(4000);

 /* create dynamic HTML report */
 SET report = '<html><title>Test Report</title><body>' || chr(10) ||
 '<h2>Test Report</h2><hr>' || chr(10) ||
 '<table><tr>' || chr(10) ||
 '<th bgcolor=black>Col 1</th>' || chr(10) ||
 '<th bgcolor=black>Col 2</th></tr>' || chr(10) ||
 '<tr><td>Value A</td><td align=right>1</td></tr>' || chr(10) ||
 '<tr><td>Value B</td><td align=right>2</td></tr>' || chr(10) ||
 '</table></body></html>';

 CALL dbmail.CreateMailFile('/maildir/report.htm', report,
 0, errors, ret_code);

 /* create email attachment from report file */
 CALL dbmai.AttachFile(NULL, '/maildir/report.htm', errors, attach_id);

 /* delete temporary report file */
 CALL dbmail.DeleteMailFile('/maildir/report.htm', errors, ret_code);

 /* send report by email */
 CALL dbmail.SendMail('me@mycompany.com',
 'Test message with attachments',
 'The test report is attached. Please ignore this message.',
 'myname@mycompany.com', 'text/plain', 1, attach_id,
 errors, ret_code);
END

Example 2 (DB2 SQL; create fax document):

BEGIN
 DECLARE ret_code INTEGER;
 DECLARE errors VARCHAR(1000);
 DECLARE report VARCHAR(4000);

 /* create dynamic HTML report */
 SET report = '<html><title>Test Report</title><body>' || chr(10) ||
 '<h2>Test Report</h2><hr>' || chr(10) ||

CHAPTER 6, Sending email messages

 - 116 -

 '<table><tr>' || chr(10) ||
 '<th bgcolor=black>Col 1</th>' || chr(10) ||
 '<th bgcolor=black>Col 2</th></tr>' || chr(10) ||
 '<tr><td>Value A</td><td align=right>1</td></tr>' || chr(10) ||
 '<tr><td>Value B</td><td align=right>2</td></tr>' || chr(10) ||
 '</table></body></html>';

 CALL dbmail.CreateMailFile('/maildir/report.htm', report,
 0, errors, ret_code);

 /* send report by fax */
 CALL dbmail.SendFax('+1 (123) 222-3344',
 'Test fax subject', '/maildir/report.htm'
 'Generic', 'Test recipient',
 errors, ret_code);

 /* delete temporary report file */
 CALL dbmail.DeleteMailFile('/maildir/report.htm', errors, ret_code);

END

DeleteMailFile
Use this method to delete files created using CreateMailFile procedure.

Definition

 PROCEDURE dbmail.DeleteMailFile(
 file_name VARCHAR(255),
 OUT SQLMessage VARCHAR(1000),
 OUT result INT)

Argument Max size;
Value range

Description

File_Name 255 Name of the file to delete. Make sure to specify file name exactly as it was
specified with the CreateMailFile procedure.

SQLMessage 1000 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns 1 if the procedure completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description

Examples

CHAPTER 6, Sending email messages

 - 117 -

See examples available in the CreateMailFile topic.

CHAPTER 7, Sending SMS/pager messages

 - 118 -

CHAPTER 7, Sending SMS/pager messages

Overview

To send alphanumeric pager and cell phone messages from database applications use the
dbmail.SendPage method. This method can be used to send page messages to single or multiple
message recipients.

For detailed method descriptions and usage examples specific to your database system, refer to the
following topics in this chapter.

Oracle

SEND_PAGE
Use this method to send alphanumeric pager and cell phone messages from your database. The
definition of SEND_PAGE function is shown below:

Definition

db_mail.send_page(
 recipients VARCHAR2,
 message VARCHAR2)
RETURN NUMBER

Argument Max Size;
Value Range

Description

Recipients 4000 Pager or cell phone number of the message recipient including area
code. If you need to send the same message to multiple recipients, use
comma to separate multiple recipient numbers.

Message 255 Message text.

Return values:

0 - Success.

1 - Timed out. This procedure can timeout either because it cannot get a lock on the pipe, or because
the pipe remains too full to be used.

3 - An interrupt occurred.

CHAPTER 7, Sending SMS/pager messages

 - 119 -

 Usage Tips:

If you add a call to the SEND_PAGE function from a multi-row SQL statement such as SELECT ...
FROM ... TABLE, Oracle will invoke the SEND_PAGE function as many times as many rows are
affected by the statement.

The following example demonstrates how to send pager messages using a DB Mail function.

Example:

The following SELECT statement will send cell phone messages to all system administrators.

SELECT db_mail.send_page(phone_number,
 'Free space in the database is critically low. ' ||
 'Your immediate attention is required')
FROM sysadmins;

Microsoft SQL Server

SendPage
Use this method to send alphanumeric pager and cell phone messages from your database. The
definition of SendPage procedure is shown below:

Definition

PROCEDURE dbmail.SendPage(
 @recipients VARCHAR(8000),
 @message VARCHAR(255))

Argument Max Size;
Value Range

Description

Recipients 8000 Pager or cell phone number of the message recipient including area
code. If you need to send the same message to multiple recipients, use
comma to separate multiple recipient numbers.

Message 255 Message text.

Return values: Returns unique message ID or returns -1 if an error occurs.

 Usage Tips:

Use the @@ERROR global variable to check for errors. @@ERROR is set to 0 if the procedure
executed successfully. If an error occurs, a non-zero number is returned. @@ERROR returns the
number of the error message until another Transact-SQL statement is executed. You can view the text
associated with an @@ERROR error number in the SYSMESSAGES system table.

CHAPTER 7, Sending SMS/pager messages

 - 120 -

The following examples demonstrate how to send pager messages using DB Mail functions.

Example 1, single message

The following EXECUTE statement will send message messages to (111) 222-3344 pager number.

EXEC master.dbmail.SendPage '1112223344',
 'Free space in the database is critically low. Your immediate
attention is required'

Example 2, multiple messages sent in a loop

In this example we will send cell phone messages to all system administrators listed in the
administrators table.

DECLARE @cell_phone VARCHAR(20)
DECLARE c1 CURSOR
FOR SELECT cell_phone
FROM administrators

OPEN c1
-- get first cell phone number
FETCH NEXT FROM c1 INTO @cell_phone

WHILE (@@fetch_status = 0)
BEGIN
 -- replace non-digits
 SET @sell_phone = replace(
 replace(
 replace(@cell_phone, '(', ''),
 ')', ''),
 ' ', '')
 -- send page
 EXEC master.dbmail.SendPage @sell_phone,
 'Free space in the database is critically low. Your immediate
 attention is required'

 -- get next number
 FETCH NEXT FROM c1 INTO @cell_phone
END

CLOSE c1
DEALLOCATE c1

Sybase SQL Server, ASE, ASA

SendPage
Use this method to send alphanumeric pager and cell phone messages from your database. The
definition of SendPage is shown below:

Definition

PROCEDURE dbmail.SendPage(
 @recipients VARCHAR(255),
 @message VARCHAR(255),
 OUT @SQLMessage VARCHAR(255),

CHAPTER 7, Sending SMS/pager messages

 - 121 -

 OUT @result INT)

Argument Max Size;
Value Range

Description

Recipients 255 Pager or cell phone number of the message recipient including area
code. If you need to send the same message to multiple recipients, use
comma to separate multiple recipient numbers.

Message 255 Message text.

SQLMessage 255 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique message ID for the sent message (a positive number) if the procedure
completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

The following examples demonstrate how to send pager messages using DB Mail functions.

Example 1, single message

The following EXECUTE statement will send message to (111) 222-3344 pager number.

DECLARE @Ret INT, @ErrMessage VARCHAR(255)
EXEC sybsystemprocs.dbmail.SendPage '2122134455',
 'Free space in the database is critically low. Your immediate
attention is required', @ErrMessage, @Ret

Example 2, multiple messages sent in a loop (DB2 C example)

In this example we will send cell phone messages to all system administrators listed in the
administrators table.

DECLARE @Ret INT, @ErrMessage VARCHAR(255)
DECLARE @cell_phone VARCHAR(20)
DECLARE c1 CURSOR
FOR SELECT cell_phone
FROM administrators

OPEN c1
-- get first cell phone number
FETCH c1 INTO @cell_phone

WHILE (@@sqlstatus = 0)
BEGIN
 -- replace non-digits
 -- (note: str_replace function is available in 12.5.0.3 and later)
 SELECT @sell_phone = str_replace(
 str_replace(
 str_replace(@cell_phone, '(', ''),
 ')', ''),

CHAPTER 7, Sending SMS/pager messages

 - 122 -

 ' ', '')
 -- send page
 EXEC sybsystemprocs.dbmail.SendPage @sell_phone,
 'Free space in the database is critically low. Your immediate
 attention is required', @ErrMessage, @Ret

 -- get next number
 FETCH c1 INTO @cell_phone
END

CLOSE c1

IBM DB2

SendPage
Use this method to send alphanumeric pager and cell phone messages from your database. The
definition of SendPage is shown below:

Definition

PROCEDURE dbmail.SendPage(
 recipients VARCHAR(32672),
 message VARCHAR(255),
 OUT SQLMessage VARCHAR(1000),
 OUT result INT)

Argument Max Size;
Value Range

Description

Recipients 32672 Pager or cell phone number of the message recipient including area
code. If you need to send the same message to multiple recipients, use
comma to separate multiple recipient numbers.

Message 255 Message text.

SQLMessage 1000 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique message ID for the sent message (a positive number) if the procedure
completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

CHAPTER 7, Sending SMS/pager messages

 - 123 -

Examples:

The following examples demonstrate how to send pager messages using DB Mail functions.

Example 1, single message (DB2 SQL)

The following CALL statement will send message to (111) 222-4455 pager number.

DECLARE Ret INT;
DECLARE ErrMessage VARCHAR(1000);

CALL dbmail.SendPage('1112224455',
 'Free space in the database is critically low. Your immediate
 attention is required', ErrMessage, Ret);

Example 2, multiple messages sent in a loop (DB2 C)

This example DB2 external stored procedure (written in C language) will send cell phone messages to
all system administrators listed in the staff table.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

EXEC SQL INCLUDE SQLCA;

int main() {

 EXEC SQL BEGIN DECLARE SECTION;
 char phone[12] = {'\0'};
 char errors[1000] = {'\0'};
 int ret = 0;
 EXEC SQL END DECLARE SECTION;

 printf("Sample C program: DBMAIL.SENDPAGE\n");

 /* connect to database */
 EXEC SQL CONNECT TO sample;
 /* set error handler */
 EXEC SQL WHENEVER SQLERROR GOTO err_routine;

 /* deaclare cursor to fetch administator cell phone numbers
 and send alert messages */
 EXEC SQL DECLARE c1 CURSOR FOR
 SELECT replace(
 replace(
 replace(cell_phone, '(', ''),
 ')', ''),
 ' ', '')
 FROM staff WHERE job='Admin';

 /* open cursor */
 EXEC SQL OPEN c1;

 do {
 EXEC SQL FETCH c1 INTO :phone;
 if (SQLCODE != 0) break;

 /* execute DB Mail procedure */
 EXEC SQL CALL DBMAIL.SENDPAGE(:phone, 'Free space in the database is
 critically low. Your immediate

CHAPTER 7, Sending SMS/pager messages

 - 124 -

 attention is required',
 errors, &ret);

 if (ret<0) /* print error */
 printf ("DB Mail Error: %s \n ", errors);
 else
 printf ("Message sent to %s \n ", phone);

 } while (1);

 EXEC SQL CLOSE c1;

 /* reset connection */
 EXEC SQL CONNECT RESET;
 return 0;

err_routine:
 printf (" SQL Error, SQLCODE = %d \n ", SQLCODE);
 return -1;

}

CHAPTER 8, Sending network popup messages

 - 125 -

CHAPTER 8, Sending network popup
messages

Overview

To send network popup messages from database applications use the dbmail.SendPopupMessage
method. This method can be used to send messages to single or multiple message recipients or even
to broadcast messages to all users in a domain or workgroup. In order to receive network messages
users must be running Windows NT 4, Windows 2000, Windows XP or later and the standard
Messenger service must be enabled.

Here is an example message as it appears on the user's Desktop.

Messages sent using the dbmail.SendPopupMessage are similar to messages sent using Window
NT native NET SEND command.

For detailed method descriptions and usage examples specific to your database system refer to the
following topics in this chapter.

Oracle

SEND_POPUP_MESSAGE
Use this method to send network popup messages from your database applications. The definition of
SEND_POPUP_MESSAGE is shown below:

Definition

db_mail.send_popup_message(
 recipients VARCHAR2,
 message VARCHAR2)
RETURN NUMBER

CHAPTER 8, Sending network popup messages

 - 126 -

Argument Max Size;
Value Range

Description

Recipients 4000 A registered message alias such as network computer name or user
name. Use comma to separate multiple recipient names.

Message 32765 Message text. Although message size can be up to 32765 characters
long, it is not recommended to send messages that are longer than 1000
characters as the created pop up message box will take more screen
space than can fit most Desktops. Because of this, the OK button may
appear below the visible screen area thus making it difficult for the
recipient to close the message box.

Return values:

0 - Success.

1 - Timed out. This procedure can timeout either because it cannot get a lock on the pipe, or because
the pipe remains too full to be used.

3 - An interrupt occurred.

 Usage Tips:

• If you add a call to the SEND_POPUP_MESSAGE function from a multi-row SQL statement such
as SELECT ... FROM ... TABLE, Oracle will invoke the SEND_POPUP_MESSAGE function as
many times as many rows are affected by the statement.

• You can configure DB Mail to broadcast messages to all users in a domain or workgroup. To use
this feature you should enable the Broadcast option in DB Mail configuration. See Configuring
Network Popups and Alerts Options topic for more information. To broadcast messages specify
NULL for the Recipients parameters.

The following example demonstrates how to send popup messages using DB Mail functions.

Example:

The following SELECT statement will send broadcast message to all database users.

SELECT db_mail.send_popup_message(NULL,
 'This message was sent from your database. Please be advised that ' ||
 'the database will be shutdown at 5:30 PM. Make sure to save all ' ||
 'your changes and close all your database applications before that ' ||
 'time.' || chr(10) || chr(10) ||
 'Click OK to close this message box and continue working.')
FROM dual;

CHAPTER 8, Sending network popup messages

 - 127 -

Microsoft SQL Server

SendPopupMessage
Use this method to send network popup messages from your database applications. The definition of
SendPopupMessage procedure is shown below:

Definition

PROCEDURE dbmail.SendPopupMessage(
 @recipients VARCHAR(8000),
 @message VARCHAR(1000))

Argument Max Size;
Value Range

Description

Recipients 8000 A registered message alias such as network computer name or user
name. Use comma to separate multiple recipient names.

Message 1000 Message text.

Return values: Returns unique message ID or returns -1 if an error occurs.

 Usage Tips:

Use the @@ERROR global variable to check for errors. @@ERROR is set to 0 if the procedure
executed successfully. If an error occurs, a non-zero number is returned. @@ERROR returns the
number of the error message until another Transact-SQL statement is executed. You can view the text
associated with an @@ERROR error number in the SYSMESSAGES system table.

The following example demonstrates how to send popup messages using DB Mail functions.

Example:

The following EXECUTE statement will send broadcast message to all database users.

EXEC master.dbmail.SendPopupMessage NULL,
 'This message was sent from your database. Please be advised that
 the database will be shutdown at 5:30 PM. Make sure to save all
 your changes and close all your database applications before that
 time.

 Click OK to close this message box and continue working.'

Sybase SQL Server, ASE, ASA

SendPopupMessage
Use this method to send network popup messages from your database applications. The definition of
SendPopupMessage procedure is shown below:

CHAPTER 8, Sending network popup messages

 - 128 -

Definition

PROCEDURE dbmail.SendPopupMessage(
 @recipients VARCHAR(255),
 @message VARCHAR(255),
 OUT @SQLMessage VARCHAR(255),
 OUT @result INT)

Argument Max Size;
Value Range

Description

Recipients 255 A registered message alias such as network computer name or user
name. Use comma to separate multiple recipient names.

Message 255 Message text.

SQLMessage 255 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique message ID for the sent message (a positive number) if the procedure
completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

The following example demonstrates how to send popup messages using DB Mail functions.

Example:

The following EXECUTE statement will notify John Doe about meeting cancellation.

DECLARE @Ret INT, @ErrMessage VARCHAR(255)
EXEC sybsystemprocs.dbmail.SendPopupMessage 'JohnDoe',
 'Today''s sales team meeting has been canceled.', @ErrMessage, @Ret

IBM DB2

SendPopupMessage
Use this method to send network popup messages from your database applications. The definition of
SendPopupMessage procedure is shown below:

Definition

PROCEDURE dbmail.SendPopupMessage(
 recipients VARCHAR(32672),

CHAPTER 8, Sending network popup messages

 - 129 -

 message VARCHAR(1000),
 OUT SQLMessage VARCHAR(1000),
 OUT result INT)

Argument Max Size;
Value Range

Description

Recipients 32672 A registered message alias such as network computer name or user
name. Use comma to separate multiple recipient names.

Message 1000 Message text.

SQLMessage 1000 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique message ID for the sent message (a positive number) if the procedure
completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

The following example demonstrates how to send popup messages using DB Mail functions.

Example 1 (DB2 SQL, single message recipient):

The following CALL statement will notify John Doe about meeting cancellation.

DECLARE Ret INT;
DECLARE ErrMessage VARCHAR(1000);

CALL dbmail.SendPopupMessage('JohnDoe',
 'Today''s sales team meeting has been canceled.', ErrMessage, Ret);

Example 2 (DB2 SQL, message broadcast):

The following CALL statement will send broadcast message to all database users.

DECLARE Ret INT;
DECLARE ErrMessage VARCHAR(1000);

CALL dbmail.SendPopupMessage('',
 'This message was sent from your database. Please be advised that
 the database will be shutdown at 5:30 PM. Make sure to save all
 your changes and close all your database applications before that
 time.

 Click OK to close this message box and continue working.',
 ErrMessage, Ret);

CHAPTER 9, Sending system alerts

 - 130 -

CHAPTER 9, Sending system alerts

Overview

To send system alerts from database applications use the dbmail.SendAlert method. This method
can be used to send interruptible popup messages (administrative alerts) to all users whose name
appear in the Window NT alert list. Essentially this message type is similar to sending network popup
messages using the dbmail.SendPopupMessage method. The only real difference is that message
recipients are managed outside of the database and can be changed without making any changes in
the database. In order to receive alerts, users must be running Windows NT 4, Windows 2000,
Windows XP or later and the standard Messenger service must be enabled.

Here is an example message as it appears on the user's Desktop.

Messages sent using the dbmail.SendAlert are similar to messages sent by the Window NT native
Alerter service.

For detailed method descriptions and usage examples specific to your database system refer to the
following topics in this chapter.

Oracle

SEND_ALERT
Use this method to send administrative alerts from your database applications. The definition of
SEND_ALERT function is shown below:

Definition

db_mail.send_alert(
 message VARCHAR2)
RETURN NUMBER

CHAPTER 9, Sending system alerts

 - 131 -

Argument Max Size;
Value Range

Description

Message 32765 Message text. Although message size cane be up to 32765 characters
long, it is not recommended to send messages that re longer than 1000
characters as the created pop up message box will take more screen
space than can fit most Desktops. Because of this, the OK button may
appear below the visible screen area thus making it difficult for the
recipient to close the message box.

Return values:

0 - Success.

1 - Timed out. This procedure can timeout either because it cannot get a lock on the pipe, or because
the pipe remains too full to be used.

3 - An interrupt occurred.

The following example demonstrates how to send alert messages using DB Mail functions.

Example:

SELECT db_mail.send_alert('Database file corruption has been detected !!!')
FROM dual;

Microsoft SQL Server

SendAlert
Use this method to send administrative alerts from your database applications. The definition of
SendAlert procedure is shown below:

Definition

PROCEDURE dbmail.SendAlert(
 @message VARCHAR(1000))

Argument Max Size;
Value Range

Description

Message 1000 Message text.

Return values: Returns unique message ID or returns -1 if an error occurs.

CHAPTER 9, Sending system alerts

 - 132 -

 Usage Tips:

Use the @@ERROR global variable to check for errors. @@ERROR is set to 0 if the procedure
executed successfully. If an error occurs, a non-zero number is returned. @@ERROR returns the
number of the error message until another Transact-SQL statement is executed. You can view the text
associated with an @@ERROR error number in the SYSMESSAGES system table.

Example:

The following EXECUTE statement will send administrative alert to all system administrators.

EXEC master.dbmail.SendAlert 'Database file corruption has been detected !!!'

Sybase SQL Server, ASE, ASA

SendAlert
Use this method to send administrative alerts from your database applications. The definition of
SendAlert procedure is shown below:

Definition

PROCEDURE dbmail.SendAlert(
 @message VARCHAR(255),
 OUT @SQLMessage VARCHAR(255),
 OUT @result INT)

Argument Max Size;
Value Range

Description

Message 255 Message text.

SQLMessage 255 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique message ID for the sent message (a positive number) if the procedure
completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

Example:

The following EXECUTE statement will send administrative alert to all system administrators.

CHAPTER 9, Sending system alerts

 - 133 -

DECLARE @Ret INT, @ErrMessage VARCHAR(255)
EXEC sybsystemprocs.dbmail.SendAlert
 'Database file corruption has been detected !!!',
 @ErrMessage, @Ret

IBM DB2

SendAlert
Use this method to send administrative alerts from your database applications. The definition of
SendAlert procedure is shown below:

Definition

PROCEDURE dbmail.SendAlert(
 message VARCHAR(1000),
 OUT SQLMessage VARCHAR(1000),
 OUT result INT)

Argument Max Size;
Value Range

Description

Message 1000 Message text.

SQLMessage 1000 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique message ID for the sent message (a positive number) if the procedure
completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

Example (DB2 SQL):

The following CALL statement will send administrative alert to all system administrators.

DECLARE Ret INT;
DECLARE ErrMessage VARCHAR(1000);
CALL dbmail.SendAlert(
 'Database file corruption has been detected !!!',
 ErrMessage, Ret);

CHAPTER 10, Sending electronic faxes

 - 134 -

CHAPTER 10, Sending electronic faxes

Overview

To send electronic faxes from database applications use the dbmail.SendFax or
dbmail.SendFaxEx methods. Both methods allow you to specify a text-based file such as HTML or
XML that DB Mail will convert to fax-compatible TIFF image. You can create files to be faxed either
directly from your applications using file access methods available in the application programming
system. Alternately, you can call the dbmail.CreateMailFile method. In any scenario, after such
file is created you would call one of SendFax methods which converts the file to a TIFF image. DB Mail
then communicates to the fax server and transmits the previously created TIFF image.

Why HTML and XML?

DB Mail internally uses Microsoft® Internet Explorer® control to render HTML and XML pages. Both
HTML and XML provide ways to describe the visual appearance of the documents, yet this information
is stored in flat text files that can be easily written from SQL and from various database applications.
Using the latest versions of Internet Explorer and a wide variety of features available in the latest HTML
and/or XML incarnations, you can create documents with virtually any layout and then use DB Mail to
automatically fax such documents. For example, you can automate unattended creation and faxing of
such common business documents as invoices, bill of ladings, transaction receipts, inventory reports
and so on. This requires that you possess certain knowledge of HTML and/or XML features, which are
not covered in this manual. A good place to learn HTML and Internet Explorer features is Microsoft
Development Network. You can find complete HTML and DHTML reference at
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/html/reference/elements.asp

Advanced options

DB Mail provides options for attaching cover pages to faxed documents. Using these options you
dynamically fill cover page properties including recipient name, company and fax, sender information,
cover page message and so on. You can also instruct DB Mail to notify you by email after successful or
failed fax transmissions, or even in both cases.

DB Mail supports multiple fax cover pages. When creating fax messages you can select which cover
page you want to use. Different users and applications can use different cover pages.

For more information on how to create or edit cover pages, refer to Creating and modifying cover pages
topic.

For detailed descriptions of the dbmail.SendFax method and usage examples specific to your
database system refer to the following topics in this chapter.

Creating and modifying cover pages

To create, add, edit, or delete cover pages ppen Fax applet in the Windows Control Panel. On the
Cover Pages tab, do one or more of the following:

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/html/reference/elements.asp

CHAPTER 10, Sending electronic faxes

 - 135 -

To Do this

Create a new cover page Click New to start the Fax Cover Page Editor.

Add a cover page to your
personal cover pages list

Click Add to open the Browse for New Cover Page File dialog
box. Locate the desired cover page, and then click Open to add
the cover page file to your personal cover pages list. You only
need to add a cover page if you have a personal cover page saved
in another location other than the default directory.

Open and edit an existing
cover page

Click a fax cover page to select it, and then click Open to start the
Fax Cover Page Editor.

Delete an existing cover
page

Click a fax cover page to select it, and then click Delete.

 Important Notes:

• To open Fax, click Start, point to Settings, click Control Panel, and then double-click Fax. If
Fax does not appear, you need to install a fax device (such as a modem).

• Cover pages must have a .COV file extension. If you cannot find the cover page you are
looking for, make sure it has the correct extension.

Sample cover page design is shown below

CHAPTER 10, Sending electronic faxes

 - 136 -

Oracle

SEND_FAX
Use this method to fax documents directly from your database or from external database-connected
applications. The definition of the SEND_FAX function is shown below:

Definition

db_mail.send_fax(
 fax VARCHAR2,
 subject VARCHAR2,
 file_name VARCHAR2,
 cover_page_name VARCHAR2 DEFAULT NULL,
 recipient_name VARCHAR2 DEFAULT NULL)
RETURN NUMBER

Argument Max Size;
Value Range

Description

Fax 50 Recipient's fax number. Specify the number exactly as you would dial it
from your phone number including any dial out numbers, long distance
codes, local area codes and so on. Digits in the number can be
separated by optional dashes, parenthesis, spaces and other non-digit
symbols. For example, 1 (212) 555-6789

Subject 255 Message subject. If Cover_page_name value is not NULL and the cover
page features the RE field, the subject text is used for that field. See
sample cover page in Creating and modifying cover pages section for
details.

File_Name 255 Name of the file to fax. Name must conform to standard file naming
conventions and should not include file path. The referenced file must
exist in the directory specified by the MAILSTORE directory object.

Cover_page_
name

50 Cover page file name not including file path and file extension. If NULL
value is passed for the Cover_page_name argument, no cover page is
attached to the fax.

Recipient_name 50 Recipient's name

Return values:

0 - Success.

1 - Timed out. This procedure can timeout either because it cannot get a lock on the pipe, or because
the pipe remains too full to be used.

3 - An interrupt occurred.

CHAPTER 10, Sending electronic faxes

 - 137 -

An exception –20021 is raised in case the file cannot be found or loaded. Use Oracle SQLERRM
session variable to obtain the error description.

 Usage Tips:

• If you add a call to the SEND_FAX function from a multi-row SQL statement such as
SELECT ... FROM ... TABLE, Oracle will invoke the SEND_FAX function as many times
as many rows are affected by the statement.

• HTML and XML files used for faxing can refer to other files such as images, cascading
style sheets, and so on as long as these files are accessible via the Intranet or Internet
from the computer running DB Mail Server. The composite document is rendered using all
referenced objects at the time the message is processed and converted to a single TIFF
image.

• When developing your fax procedures, you can use Internet Explorer or other web browser
to preview and test the created documents. What you see in the browser Print Preview
mode is what you will get in the fax. Faxing HTML and XML documents is virtually the
same as printing them to a printer. The only real difference is that instead of producing
printed hard copies DB Mail produces TIFF images and then automatically faxes them to
the destination fax number.

Example:

The following example demonstrates how to send electronic fax using DB Mail functions.

In this example we will dynamically create a HTML report and then fax it.

DECLARE
 ret_code INTEGER;
BEGIN
 db_mail.create_mail_file('report.htm',
 '<html><title>Test Report</title><body>' || chr(10) ||
 '<h2>Test Report</h2><hr>' || chr(10) ||
 '<table><tr><th bgcolor=black>Col 1</th>' ||
 '<th bgcolor=black>Col 2</th></tr>' || chr(10) ||
 '<tr><td>Value A</td><td align=right>1</td></tr>' || chr(10) ||
 '<tr><td>Value B</td><td align=right>2</td></tr>' || chr(10) ||
 '</table></body></html>', FALSE);

 ret_code := db_mail.send_fax('+1 (123) 222-3344',
 'Test fax subject',
 'report.htm',
 'Generic',
 'Test recipient');

 db_mail.delete_mail_file('report.htm');

 IF ret_code != 0 THEN
 raise_application_error(-20010, 'SEND_FAX Status = ' || ret_code);
 END IF;

END;

CHAPTER 10, Sending electronic faxes

 - 138 -

SEND_FAX_EX
Use this method to fax documents directly from your database or from external database-connected
applications. SEND_FAX_EX is an extended version of SEND_FAX procedure. Simply put
SEND_FAX_EX supports more options then SEND_FAX function. The definition of SEND_FAX_EX
function is shown below:

Definition

db_mail.send_fax_ex(
 fax VARCHAR2,
 subject VARCHAR2,
 file_name VARCHAR2,
 cover_page_name VARCHAR2 DEFAULT NULL,
 recipient_name VARCHAR2 DEFAULT NULL,
 recipient_co VARCHAR2 DEFAULT NULL,
 recipient_phone VARCHAR2 DEFAULT NULL,
 cover_page_message VARCHAR2 DEFAULT NULL,
 sender_name VARCHAR2 DEFAULT NULL,
 sender_co VARCHAR2 DEFAULT NULL,
 sender_dept VARCHAR2 DEFAULT NULL,
 sender_phone VARCHAR2 DEFAULT NULL,
 sender_fax VARCHAR2 DEFAULT NULL,
 notify_on_success BOOLEAN DEFAULT FALSE,
 notify_on_failure BOOLEAN DEFAULT FALSE,
 notify_email VARCHAR2 DEFAULT NULL,
 priority INTEGER DEFAULT 1)
RETURN NUMBER

Argument Max Size;
Value Range

Description

Fax 50 Recipient's fax number. Specify the number exactly as you would dial it
from your phone number including any dial out numbers, long distance
codes, local area codes and so on. Digits in the number can be
separated by optional dashes, parenthesis, spaces and other non-digit
symbols. For example, 1 (212) 555-6789

Subject 255 Message subject. If Cover_page_name value is not NULL and the cover
page features the RE field, the subject text is used for that field. See
sample cover page in Creating and modifying cover pages section for
details.

File_Name 255 Name of the file to fax. The name must conform to standard file naming
conventions and should not include file path. The referenced file must
exist in the directory specified by the MAILSTORE directory object.

Cover_page_
name

50 Cover page file name not including file path and file extension. . If NULL
value is passed for the Cover_page_name argument, no cover page is
attached to the fax.

Recipient_name 50 Recipient's name.

Recipient_co 100 Recipients' company name, specify NULL if not available.

Recipient_phone 50 Recipient phone number. The phone number can be specified in any
format and may also include phone extensions if any. For example (121)
555-3456 x123

CHAPTER 10, Sending electronic faxes

 - 139 -

Cover_page_
message

1000 Free message text that will appear in the cover page message area.

Sender_name 50 Sender's name.

Sender_co 100 Sender's company name

Sender_dept 100 Sender's department, for example Sales.

Sender_phone 50 Sender's phone number. The phone number can be specified in any
format and may also include phone extensions if any. For example (121)
098-3456 x123

Sender_fax 50 Sender's fax number. The fax number can be specified in any format.

Notify_on_
success

TRUE/FALSE Whether to notify message sender by email after fax transmission
completed successfully. If TRUE, in case of a successful transmission
DB Mail will email notification to the email address specified in
Notify_Email argument.

Notify_on_
failure

TRUE/FALSE Whether to notify message sender by email after fax transmission failed.
If TRUE, in case of a failed transmission DB Mail will email notification to
the email address specified in Notify_Email argument.

Notify_Email 100 Email address of the person or email group that will receive email
notification in case Notify_on_success or Notify_on_failure value is
TRUE.

Return values:

0 - Success.

1 - Timed out. This procedure can timeout either because it cannot get a lock on the pipe, or because
the pipe remains too full to be used.

3 - An interrupt occurred.

An exception –20021 is raised in case the file cannot be found or loaded. Use Oracle SQLERRM
session variable to obtain the error description.

 Usage Tips:

• If you add a call to the SEND_FAX function from a multi-row SQL statement such as
SELECT ... FROM ... TABLE, Oracle will invoke the SEND_FAX function as many times
as many rows are affected by the statement.

• HTML and XML files used for faxing can refer to other files such as images, cascading
style sheets, and so on as long as these files are accessible via the Intranet or Internet
from the computer running DB Mail Server. The composite document is rendered using all
referenced objects at the time the message is processed and converted to a single TIFF
image.

• When developing your fax procedures, you can use Internet Explorer or other web browser
to preview and test the created documents. What you see in the browser Print Preview

CHAPTER 10, Sending electronic faxes

 - 140 -

mode is what you get in the fax. Faxing HTML and XML documents is virtually the same
as printing them to a printer. The only real difference is that instead of producing printed
hard-copies DB Mail produces TIFF images and then automatically faxes them to the
destination fax number.

Example:

In this example we will dynamically create invoices for all orders placed yesterday and then fax them to
customers.

DECLARE
 invoice_hmtl VARCHAR2(4000);
BEGIN

 -- for every invoice in the orders table with yesterday's date
 -- build invoice document
 FOR rec IN (SELECT * FROM orders WHERE order_date = trunc(sysdate)-1)
 LOOP
 -- make invoice header
 invoice_hmtl :=
 '<html><head>' ||
 '<title>Invoice #' || rec.order_no || '</title>' ||

 '<link rel=stylesheet href="http://www.company.com/style.css">' ||
 '</head>' ||
 '<body>' ||
 '<h2>Invoice #' || rec.order_no || '</h2><hr>' ||
 '<table>' ||
 '<tr><th class=inv_header>Order Date</th>' ||
 '<th class=inv_header>PO #</th>' ||
 '<th class=inv_header>Customer #</th>' ||
 '<th class=inv_header>Customer Name</th>' ||
 '<th class=inv_header>Ship Via</th>' ||
 '<th class=inv_header>Ship Date</th>' ||
 </tr>' ||
 '<tr><td class=inv_data>' || rec.order_date || '</td>' ||
 '<td class=inv_data>' || rec.po_no || '</td>' ||
 '<td class=inv_data>' || rec.cust_no || '</td>' ||
 '<td class=inv_data>' || rec.cust_name || '</td>' ||
 '<td class=inv_data>' || rec.ship_via || '</td>' ||
 '<td class=inv_data>' || rec.ship_date || '</td>' ||
 </tr>' ||
 '</table>';
 db_mail.create_mail_file('invoice.htm', invoice_hmtl, FALSE);

 -- now add invoice details
 invoice_hmtl :=
 '<table>' ||
 '<tr><th class=inv_header>Line #</th>' ||
 '<th class=inv_header>Item Code</th>' ||
 '<th class=inv_header>Item Name</th>' ||
 '<th class=inv_header>Quantity</th>' ||
 '<th class=inv_header>Price</th>' ||
 </tr>';
 db_mail.create_mail_file('invoice.htm', invoice_hmtl, TRUE);

 FOR rec2 IN (SELECT * FROM order_items WHERE order_no = rec.order_no)
 LOOP
 invoice_hmtl :=
 '<tr><td class=inv_data>' || rec2.line_no || '</td>' ||
 '<td class=inv_data>' || rec2.item || '</td>' ||
 '<td class=inv_data>' || rec2.item_name || '</td>' ||

CHAPTER 10, Sending electronic faxes

 - 141 -

 '<td class=inv_data>' || rec2.quantity || '</td>' ||
 '<td class=inv_data>' || rec2.price || '</td>' ||
 </tr>';
 db_mail.create_mail_file('invoice.htm', invoice_hmtl, TRUE);
 END LOOP;

 -- now add invoice total and save it as a file
 invoice_hmtl := '</table>' ||
 '<hr>' ||
 '<p class=totals><h3>TOTAL: ' || rec.order_amount || '</p>' ||
 '</body>' ||
 '</html>';
 dbdb_mail.create_mail_file('invoice.htm', invoice_hmtl, TRUE);

 -- fax invoice
 ret_code := db_mail.send_fax_ex(
 rec.cust_fax, 'Invoice #' || rec.order_no,
 'invoice.htm', 'InvoiceCoverPage',
 rec.cust_name, rec.cust_company,
 rec.cust_phone, NULL,
 'This is your invoice. Call our sales department '||
 'at (111) 222-3344 if you have any questions ' ||
 'concerning this invoice',
 NULL, 'My company', 'Sales department',
 '(111) 222-3344', '(111) 222-3355',
 FALSE, TRUE, 'ar@company.com', 0);
 -- move to the next order and create/fax next invoice
 END LOOP;
END;

Microsoft SQL Server

SendFax
Use this method to fax documents directly from your database or from external database-connected
applications. The definition of SendFax function is shown below:

Definition

dbmail.SendFax(
 @fax VARCHAR(50),
 @subject VARCHAR(255),
 @file_name VARCHAR(255),
 @cover_page_name VARCHAR(50) = NULL,
 @recipient_name VARCHAR(50) = NULL)

Argument Max Size;
Value Range

Description

Fax 50 Recipient's fax number. Specify the number exactly as you would dial it
from your phone number including any dial out numbers, long distance
codes, local area codes and so on. Digits in the number can be
separated by optional dashes, parenthesis, spaces and other non-digit
symbols. For example, 1 (212) 555-6789

Subject 255 Message subject. If Cover_page_name value is not NULL and the cover
page features the RE field, the subject text is used for that field. See

CHAPTER 10, Sending electronic faxes

 - 142 -

sample cover page in Creating and modifying cover pages section for
details.

File_Name 255 Name of the file to fax. The name must conform to standard file naming
conventions and may include the file path.

Cover_page_
name

50 Cover page file name not including file path and file extension. If NULL
value is passed for the Cover_page_name argument, no cover page is
attached to the fax.

Recipient_name 50 Recipient's name

Return values: Returns unique message ID or returns -1 if an error occurs.

 Usage Tips:

• Use the @@ERROR global variable to check for errors. @@ERROR is set to 0 if the
procedure executed successfully. If an error occurs, a non-zero number is returned.
@@ERROR returns the number of the error message until another Transact-SQL
statement is executed. You can view the text associated with an @@ERROR error
number in the SYSMESSAGES system table.

• HTML and XML files used for faxing can refer to other files such as images, cascading
style sheets, and so on as long as these files are accessible via the Intranet or Internet
from the computer running DB Mail Server. The composite document is rendered using all
referenced objects at the time the message is processed and converted to a single TIFF
image.

• When developing your fax procedures, you can use Internet Explorer or other web browser
to preview and test the created documents. What you see in the browser Print Preview
mode is what you will get in the fax. Faxing HTML and XML documents is virtually the
same as printing them to a printer. The only real difference is that instead of producing
printed hard copies DB Mail produces TIFF images and then automatically faxes them to
the destination fax number.

Example:

The following example demonstrates how to send electronic fax using DB Mail functions.

In this example we will dynamically create HTML report and then fax it.

EXEC master.dbmail.CreateMailFile 'c:\temp\report.htm',
 '<html><title>Test Report</title><body>
 <h2>Test Report</h2><hr>
 <table><tr><th bgcolor=black>Col 1</th>
 <th bgcolor=black>Col 2</th></tr>
 <tr><td>Value A</td><td align=right>1</td></tr>
 <tr><td>Value B</td><td align=right>2</td></tr>
 </table></body></html>', 0

EXEC master.dbmail.SendFax '+1 (123) 222-3344',
 'Test fax subject',
 'c:\temp\report.htm',
 'Generic',
 'Test recipient'

EXEC master.dbmail.DeleteMailFile 'c:\temp\report.htm'

CHAPTER 10, Sending electronic faxes

 - 143 -

SendFaxEx
Use this method to fax documents directly from your database or from external database-connected
applications. SendFaxEx is an extended version of SendFax procedure. Simply put SendFaxEx
supports more options then SendFax function. The definition of SendFaxEx procedure is shown below:

Definition

db_mail.SendFaxEx(
 @fax VARCHAR(50),
 @subject VARCHAR(255),
 @file_name VARCHAR(255),
 @cover_page_name VARCHAR(50) = NULL,
 @recipient_name VARCHAR(50) = NULL,
 @recipient_co VARCHAR(50) = NULL,
 @recipient_phone VARCHAR(50) = NULL,
 @cover_page_message VARCHAR(1000) = NULL,
 @sender_name VARCHAR(50) = NULL,
 @sender_co VARCHAR(50) = NULL,
 @sender_dept VARCHAR(50) = NULL,
 @sender_phone VARCHAR(50) = NULL,
 @sender_fax VARCHAR(50) = NULL,
 @notify_on_success SMALLINT = 0,
 @notify_on_failure SMALLINT = 0,
 @notify_email VARCHAR(100) = NULL,
 @priority INTEGER = 0)
RETURN NUMBER

Argument Max Size;
Value Range

Description

Fax 50 Recipient's fax number. Specify the number exactly as you would dial it
from your phone number including any dial out numbers, long distance
codes, local area codes and so on. Digits in the number can be
separated by optional dashes, parenthesis, spaces and other non-digit
symbols. For example, 1 (212) 555-6789

Subject 255 Message subject. If Cover_page_name value is not NULL and the cover
page features the RE field, the subject text is used for that field. See
sample cover page in Creating and modifying cover pages section for
details.

File_Name 255 Name of the file to fax. The name must conform to standard file naming
conventions and may include file path.

Cover_page_
name

50 Cover page file name not including file path and file extension. If NULL
value is passed for the Cover_page_name argument, no cover page is
attached to the fax.

Recipient_name 50 Recipient's name.

Recipient_co 50 Recipients' company name, specify NULL if not available.

Recipient_phone 50 Recipient phone number. The phone number can be specified in any
format and may also include phone extensions if any. For example (121)

CHAPTER 10, Sending electronic faxes

 - 144 -

555-3456 x123

Cover_page_
message

1000 Free message text that will appear in the cover page message area.

Sender_name 50 Sender's name.

Sender_co 50 Sender's company name

Sender_dept 50 Sender's department, for example Sales.

Sender_phone 50 Sender's phone number. The phone number can be specified in any
format and may also include phone extensions if any. For example (121)
555-3456 x123

Sender_fax 50 Sender's fax number. The fax number can be specified in any format.

Notify_on_
success

0..1 Whether to notify message sender by email after fax transmission
completed successfully. If this value is 1, in case of a successful
transmission DB Mail will email notification to the email address specified
in Notify_Email argument.

Notify_on_
failure

0..1 Whether to notify message sender by email after fax transmission failed.
If this value is 1, in case of a failed transmission DB Mail will email
notification to the email address specified in Notify_Email argument.

Notify_Email 100 Email address of the person or email group that will receive email
notification in case Notify_on_success or Notify_on_failure value is 1.

Return values: Returns unique message ID or returns -1 if an error occurs.

 Usage Tips:

• Use the @@ERROR global variable to check for errors. @@ERROR is set to 0 if the
procedure executed successfully. If an error occurs, a non-zero number is returned.
@@ERROR returns the number of the error message until another Transact-SQL
statement is executed. You can view the text associated with an @@ERROR error
number in the SYSMESSAGES system table.

• HTML and XML files used for faxing can refer to other files such as images, cascading
style sheets, and so on as long as these files are accessible via the Intranet or Internet
from the computer running DB Mail Server. The composite document is rendered using all
referenced objects at the time the message is processed and converted to a single TIFF
image.

• When developing your fax procedures, you can use Internet Explorer or other web browser
to preview and test the created documents. What you see in the browser Print Preview
mode is what you will get in the fax. Faxing HTML and XML documents is virtually the
same as printing them to a printer. The only real difference is that instead of producing
printed hard copies DB Mail produces TIFF images and then automatically faxes them to
the destination fax number.

Example:

In this example we will dynamically create invoices for all orders placed yesterday and then fax them to

CHAPTER 10, Sending electronic faxes

 - 145 -

customers.

DECLARE @invoice_hmtl VARCHAR(8000)
DECLARE @order_no INT, @order_date DATETIME, @po_num VARCHAR(20),

 @cust_no INT, @cust_name VARCHAR(50), @ship_via CHAR(4),
 @ship_date DATETIME, @order_amount MONEY,
 @cust_fax VARCHAR(12), @cust_phone VARCHAR(12),
 @cust_company VARCHAR(50)
DECLARE @line_no INT, @item VARCHAR(10), @item_name VARCHAR(100),
 @quantity FLOAT, @price MONEY

DECLARE c1 CURSOR
SELECT order_no, order_date, po_num, cust_no,
 cust_name, ship_via, ship_date, order_amount,
 cust_fax, cust_phone, cust_company
FROM orders
WHERE order_date = DateAdd(day, -1, convert(datetime,
 convert(GetDate(), 101)))

-- build invoice document for every invoice
-- in the orders table with yesterday's date
OPEN c1
-- get first order
FETCH NEXT FROM c1 INTO @order_no, @order_date, @po_num,
 @cust_no, @cust_name, @ship_via, @ship_date, @order_amount,
 @cust_fax, @cust_phone, @cust_company

WHILE (@@fetch_status = 0)
BEGIN
 -- make invoice header
 SET @invoice_hmtl =
 '<html><head>' +
 '<title>Invoice #' + covert(varchar, @order_no) + '</title>' +

 '<link rel=stylesheet href="http://www.company.com/style.css">' +
 '</head>' +
 '<body>' +
 '<h2>Invoice #' + covert(varchar, @order_no) + '</h2><hr>' +
 '<table>' +
 '<tr><th class=inv_header>Order Date</th>' +
 '<th class=inv_header>PO #</th>' +
 '<th class=inv_header>Customer #</th>' +
 '<th class=inv_header>Customer Name</th>' +
 '<th class=inv_header>Ship Via</th>' +
 '<th class=inv_header>Ship Date</th>' +
 </tr>' +
 '<tr><td class=inv_data>' +
 covert(varchar, @order_date, 101) + '</td>' +
 '<td class=inv_data>' +
 covert(varchar, @po_no) + '</td>' +
 '<td class=inv_data>' +
 covert(varchar, @cust_no + '</td>' +
 '<td class=inv_data>' + @cust_name + '</td>' +
 '<td class=inv_data>' + @ship_via + '</td>' +
 '<td class=inv_data>' +
 covert(varchar, @ship_date, 101) + '</td>' +
 </tr>' +
 '</table>'
 EXEC master.dbmail.CreateMailFile 'c:\temp\invoice.htm',
 @invoice_html, 0

 -- now add invoice details
 SET invoice_hmtl =

CHAPTER 10, Sending electronic faxes

 - 146 -

 '<table>' +
 '<tr><th class=inv_header>Line #</th>' +
 '<th class=inv_header>Item Code</th>' +
 '<th class=inv_header>Item Name</th>' +
 '<th class=inv_header>Quantity</th>' +
 '<th class=inv_header>Price</th>' +
 </tr>'
 EXEC master.dbmail.CreateMailFile 'c:\temp\invoice.htm',
 @invoice_html, 1

 -- declare internal cursor to fetch ordered items
 DECLARE c2 CURSOR
 SELECT line_no, item, item_name, quantity, price
 FROM order_items
 WHERE order_no = @order_no

 OPEN c2
 -- get first line
 FETCH NEXT FROM c2 INTO @line_no, @item, @item_name,
 @quantity, @price

 WHILE (@@fetch_status = 0)
 BEGIN
 SET invoice_hmtl =
 '<tr><td class=inv_data>' +
 convert(varchar, line_no) + '</td>' +
 '<td class=inv_data>' + @item + '</td>' +
 '<td class=inv_data>' + @item_name + '</td>' +
 '<td class=inv_data>' +
 convert(varchar, @quantity + '</td>' +
 '<td class=inv_data>' +
 convert(varchar, price) + '</td>' +
 </tr>'
 EXEC master.dbmail.CreateMailFile 'c:\temp\invoice.htm',
 @invoice_html, 1

 -- move to the next item
 FETCH NEXT FROM c2 INTO @line_no, @item, @item_name,
 @quantity, @price
 END

 CLOSE c2
 DEALLOCATE c2

 -- now add invoice total and also save it as a file
 SET invoice_hmtl =
 '</table>' +
 '<hr>' +
 '<p class=totals><h3>TOTAL: ' +
 covert(varchar, @order_amount) + '</p>' +
 '</body>' +
 '</html>'
 EXEC master.dbmail.CreateMailFile 'c:\temp\invoice.htm',
 @invoice_html, 1
 -- fax invoice
 EXEC master.dbmail.SendFaxEx
 @cust_fax, 'Invoice',
 'c:\temp\invoice.htm', 'InvoiceCoverPage',
 @cust_name, @cust_company,
 @cust_phone, NULL,
 'This is your invoice. Call our sales department
 at (111) 222-3344 if you have any questions
 concerning this invoice',

CHAPTER 10, Sending electronic faxes

 - 147 -

 NULL, 'My company', 'Sales department',
 '(111) 222-3344', '(111) 222-3355',
 0, 1, 'ar@company.com', 0

 -- move to the next order and create/fax next invoice
 FETCH NEXT FROM c1 INTO @order_no, @order_date, @po_num,
 @cust_no, @cust_name, @ship_via, @ship_date, @order_amount,
 @cust_fax, @cust_phone, @cust_company

END

CLOSE c1
DEALLOCATE c1

Sybase SQL Server, ASE, ASA

SendFax
Use this method to fax documents directly from your database or from external database-connected
applications. The definition of SendFax function is shown below:

Definition

dbmail.SendFax(
 @fax VARCHAR(50),
 @subject VARCHAR(255),
 @file_name VARCHAR(255),
 @cover_page_name VARCHAR(50),
 @recipient_name VARCHAR(50),
 OUT @SQLMessage VARCHAR(255),
 OUT @result INT)

Argument Max Size;
Value Range

Description

Fax 50 Recipient's fax number. Specify the number exactly as you would dial it
from your phone number including any dial out numbers, long distance
codes, local area codes and so on. Digits in the number can be
separated by optional dashes, parenthesis, spaces and other non-digit
symbols. For example, 1 (212) 555-6789

Subject 255 Message subject. If Cover_page_name value is not NULL and the cover
page features the RE field, the subject text is used for that field. See
sample cover page in Creating and modifying cover pages section for
details.

File_Name 255 Name of the file to fax. Name must conform to standard file naming
conventions and should not include file path.

Cover_page_
name

50 Cover page file name not including file path and file extension. If NULL
value is passed for the Cover_page_name argument, no cover page is
attached to the fax.

Recipient_name 50 Recipient's name

CHAPTER 10, Sending electronic faxes

 - 148 -

SQLMessage 255 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique message ID for the sent message (a positive number) if the procedure
completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

 Usage Tips:

• HTML and XML files used for faxing can refer to other files such as images, cascading
style sheets, and so on as long as these files are accessible via the Intranet or Internet
from the computer running DB Mail Server. The composite document is rendered using all
referenced objects at the time the message is processed and converted to a single TIFF
image.

• When developing your fax procedures you can use Internet Explorer or other web browser
to preview and test the created documents. What you see in the browser Print Preview
mode is what you will get in the fax. Faxing HTML and XML documents is virtually the
same as printing them to a printer. The only real difference is that instead of producing
printed hard copies DB Mail produces TIFF images and then automatically faxes them to
the destination fax number.

Example:

The following example demonstrates how to send electronic fax using DB Mail functions.

In this example we will dynamically create HTML report and then fax it.

DECLARE @Ret INT, @ErrMessage VARCHAR(255)
EXEC sybsystemprocs.dbmail.CreateMailFile 'report.htm',
 '<html><title>Test Report</title><body>
 <h2>Test Report</h2><hr>
 <table><tr><th bgcolor=black>Col 1</th>
 <th bgcolor=black>Col 2</th></tr>
 <tr><td>Value A</td><td align=right>1</td></tr>
 <tr><td>Value B</td><td align=right>2</td></tr>
 </table></body></html>', 0, @ErrMessage, @Ret

EXEC sybsystemprocs.dbmail.SendFax '+1 (123) 222-3344',
 'Test fax subject',
 report.htm',
 'Generic',
 'Test recipient',
 @ErrMessage, @Ret

EXEC sybsystemprocs.dbmail.DeleteMailFile 'report.htm', @ErrMessage, @Ret

CHAPTER 10, Sending electronic faxes

 - 149 -

SendFaxEx
Use this method to fax documents directly from your database or from external database-connected
applications. SendFaxEx is an extended version of SendFax procedure. Simply put SendFaxEx
supports more options then SendFax function. The definition of SendFaxEx procedure is shown below:

Definition

db_mail.SendFaxEx(
 @fax VARCHAR(50),
 @subject VARCHAR(255),
 @file_name VARCHAR(255),
 @cover_page_name VARCHAR(50),
 @recipient_name VARCHAR(50),
 @recipient_co VARCHAR(50),
 @recipient_phone VARCHAR(50),
 @cover_page_message VARCHAR(1000),
 @sender_name VARCHAR(50),
 @sender_co VARCHAR(50),
 @sender_dept VARCHAR(50),
 @sender_phone VARCHAR(50),
 @sender_fax VARCHAR(50),
 @notify_on_success SMALLINT,
 @notify_on_failure SMALLINT,
 @notify_email VARCHAR(100),
 @priority INTEGER,
 OUT @SQLMessage VARCHAR(255),
 OUT @result INT)
RETURN NUMBER

Argument Max Size;
Value Range

Description

Fax 50 Recipient's fax number. Specify the number exactly as you would dial it
from your phone number including any dial out numbers, long distance
codes, local area codes and so on. Digits in the number can be
separated by optional dashes, parenthesis, spaces and other non-digit
symbols. For example, 1 (212) 555-6789

Subject 255 Message subject. If Cover_page_name value is not NULL and the cover
page features the RE field, the subject text is used for that field. See
sample cover page in Creating and modifying cover pages section for
details.

File_Name 255 Name of the file to fax. Name must conform to standard file naming
conventions and should not include file path.

Cover_page_
name

50 Cover page file name not including file path and file extension.. If NULL
value is passed for the Cover_page_name, argument, no cover page is
attached to the fax.

Recipient_name 50 Recipient's name.

Recipient_co 50 Recipients' company name, specify NULL if not available.

Recipient_phone 50 Recipient phone number. The phone number can be specified in any
format and may also include phone extensions if any. For example (121)
555-3456 x123

CHAPTER 10, Sending electronic faxes

 - 150 -

Cover_page_
message

255 Free message text that will appear in the cover page message area.

Sender_name 50 Sender's name.

Sender_co 50 Sender's company name

Sender_dept 50 Sender's department, for example Sales.

Sender_phone 50 Sender's phone number. The phone number can be specified in any
format and may also include phone extensions if any. For example (121)
555-3456 x123

Sender_fax 50 Sender's fax number. The fax number can be specified in any format.

Notify_on_
success

0..1 Whether to notify message sender by email after fax transmission
completed successfully. If this value is 1, in case of a successful
transmission DB Mail will email notification to the email address specified
in Notify_Email argument.

Notify_on_
failure

0..1 Whether to notify message sender by email after fax transmission failed.
If this value is 1, in case of a failed transmission DB Mail will email
notification to the email address specified in Notify_Email argument.

Notify_Email 100 Email address of the person or email group that will receive email
notification in case Notify_on_success or Notify_on_failure value is 1.

SQLMessage 255 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique message ID for the sent message (a positive number) if the procedure
completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

 Usage Tips:

• HTML and XML files used for faxing can refer to other files such as images, cascading
style sheets, and so on as long as these files are accessible via the Intranet or Internet
from the computer running DB Mail Server. The composite document is rendered using all
referenced objects at the time the message is processed and converted to a single TIFF
image.

• When developing your fax procedures you can use, Internet Explorer or other web browser
to preview and test the created documents. What you see in the browser Print Preview
mode is what you will get in the fax. Faxing HTML and XML documents is virtually the
same as printing them to a printer. The only real difference is that instead of producing
printed hard copies, DB Mail produces TIFF images and then automatically faxes them to
the destination fax number.

CHAPTER 10, Sending electronic faxes

 - 151 -

Example:

In this example we will dynamically create invoices for all orders placed yesterday and then fax them to
customers.

DECLARE @Ret INT, @ErrMessage VARCHAR(255)
DECLARE @invoice_hmtl VARCHAR(255)
DECLARE @order_no INT, @order_date DATETIME, @po_num VARCHAR(20),

 @cust_no INT, @cust_name VARCHAR(50), @ship_via CHAR(4),
 @ship_date DATETIME, @order_amount MONEY,
 @cust_fax VARCHAR(12), @cust_phone VARCHAR(12),
 @cust_company VARCHAR(50)
DECLARE @line_no INT, @item VARCHAR(10), @item_name VARCHAR(100),
 @quantity FLOAT, @price MONEY

DECLARE c1 CURSOR
SELECT order_no, order_date, po_num, cust_no,
 cust_name, ship_via, ship_date, order_amount,
 cust_fax, cust_phone, cust_company
FROM orders
WHERE order_date = DateAdd(day, -1, convert(datetime,
 convert(GetDate(), 101)))

-- build invoice document for every invoice
-- in the orders table with yesterday's date
OPEN c1
-- get first order
FETCH c1 INTO @order_no, @order_date, @po_num, @cust_no, @cust_name,
 @ship_via, @ship_date, @order_amount, @cust_fax, @cust_phone,
 @cust_company

WHILE (@@sqlstatus = 0)
BEGIN
 -- make invoice header
 SELECT @invoice_hmtl =
 '<html><head>' +
 '<title>Invoice #' + covert(varchar, @order_no) + '</title>' +

 '<link rel=stylesheet href="http://www.company.com/style.css">' +
 '</head>'
 EXEC sybsystemprocs.dbmail.CreateMailFile 'invoice.htm', @invoice_html,
 0, @ErrMessage, @Ret

 SELECT @invoice_hmtl =
 '<body>' +
 '<h2>Invoice #' + covert(varchar, @order_no) + '</h2><hr>' +
 '<table>' +
 '<tr><th class=inv_header>Order Date</th>' +
 '<th class=inv_header>PO #</th>' +
 '<th class=inv_header>Customer #</th>' +
 '<th class=inv_header>Customer Name</th>' +
 '<th class=inv_header>Ship Via</th>' +
 '<th class=inv_header>Ship Date</th>' +
 </tr>'
 EXEC sybsystemprocs.dbmail.CreateMailFile 'invoice.htm', @invoice_html,
 1, @ErrMessage, @Ret

 SELECT @invoice_hmtl =
 '<tr><td class=inv_data>' +
 covert(varchar, @order_date, 101) + '</td>' +
 '<td class=inv_data>' +
 covert(varchar, @po_no) + '</td>' +
 '<td class=inv_data>' +

CHAPTER 10, Sending electronic faxes

 - 152 -

 covert(varchar, @cust_no + '</td>' +
 '<td class=inv_data>' + @cust_name + '</td>' +
 '<td class=inv_data>' + @ship_via + '</td>' +
 '<td class=inv_data>' +
 covert(varchar, @ship_date, 101) + '</td>' +
 </tr>' +
 '</table>'
 EXEC sybsystemprocs.dbmail.CreateMailFile 'invoice.htm', @invoice_html,
 1, @ErrMessage, @Ret

 -- now add invoice details
 SELECT invoice_hmtl =
 '<table>' +
 '<tr><th class=inv_header>Line #</th>' +
 '<th class=inv_header>Item Code</th>' +
 '<th class=inv_header>Item Name</th>' +
 '<th class=inv_header>Quantity</th>' +
 '<th class=inv_header>Price</th>' +
 </tr>'
 EXEC sybsystemprocs.dbmail.CreateMailFile 'invoice.htm'@invoice_html,
 1, @ErrMessage, @Ret

 -- declare internal cursor to fetch ordered items
 DECLARE c2 CURSOR
 SELECT line_no, item, item_name, quantity, price
 FROM order_items
 WHERE order_no = @order_no

 OPEN c2
 -- get first line
 FETCH c2 INTO @line_no, @item, @item_name, @quantity, @price

 WHILE (@@sqlstatus = 0)
 BEGIN
 SELECT invoice_hmtl =
 '<tr><td class=inv_data>' +
 convert(varchar, line_no) + '</td>' +
 '<td class=inv_data>' + @item + '</td>' +
 '<td class=inv_data>' + @item_name + '</td>' +
 '<td class=inv_data>' +
 convert(varchar, @quantity + '</td>' +
 '<td class=inv_data>' +
 convert(varchar, price) + '</td>' +
 </tr>'
 EXEC sybsystemprocs.dbmail.CreateMailFile 'invoice.htm',
 @invoice_html, 1, @ErrMessage, @Ret

 -- move to the next item
 FETCH c2 INTO @line_no, @item, @item_name, @quantity, @price
 END

 CLOSE c2
 DEALLOCATE c2

 -- now add invoice total and also save it as a file
 SELECT invoice_hmtl =
 '</table>' +
 '<hr>' +
 '<p class=totals><h3>TOTAL: ' +
 covert(varchar, @order_amount) + '</p>' +
 '</body>' +
 '</html>'
 EXEC sybsystemprocs.dbmail.CreateMailFile 'invoice.htm', @invoice_html,

CHAPTER 10, Sending electronic faxes

 - 153 -

 1, @ErrMessage, @Ret
 -- fax invoice
 EXEC sybsystemprocs.dbmail.SendFaxEx
 @cust_fax, 'Invoice',
 'invoice.htm', 'InvoiceCoverPage',
 @cust_name, @cust_company,
 @cust_phone, NULL,
 'This is your invoice. Call our sales department
 at (111) 222-3344 if you have any questions
 concerning this invoice',
 NULL, 'My company', 'Sales department',
 '(111) 222-3344', '(111) 222-3355',
 0, 1, 'ar@company.com', 0,
 @ErrMessage, @Ret

 -- move to the next order and create/fax next invoice
 FETCH c1 INTO @order_no, @order_date, @po_num, @cust_no, @cust_name,
 @ship_via, @ship_date, @order_amount, @cust_fax, @cust_phone,
 @cust_company

END

CLOSE c1
DEALLOCATE c1

IBM DB2

SendFax
Use this method to fax documents directly from your database or from external database-connected
applications. The definition of SendFax function is shown below:

Definition

dbmail.SendFax(
 fax VARCHAR(50),
 subject VARCHAR(255),
 file_name VARCHAR(255),
 cover_page_name VARCHAR(255),
 recipient_name VARCHAR(50),
 OUT SQLMessage VARCHAR(1000),
 OUT result INT)

Argument Max Size;
Value Range

Description

Fax 50 Recipient's fax number. Specify the number exactly as you would dial it
from your phone number including any dial out numbers, long distance
codes, local area codes and so on. Digits in the number can be
separated by optional dashes, parenthesis, spaces and other non-digit
symbols. For example, 1 (212) 555-6789

Subject 255 Message subject. If Cover_page_name value is not NULL and the cover
page features the RE field, the subject text is used for that field. See
sample cover page in Creating and modifying cover pages section for

CHAPTER 10, Sending electronic faxes

 - 154 -

details.

File_Name 255 Name of the file to fax. The name must conform to standard file naming
conventions and may include file path. The referenced file must exist in
the directory specified by the MAILSTORE directory object.

Cover_page_
name

255 Cover page file name not including file path and file extension. If NULL
value is passed for the Cover_page_name argument, no cover page is
attached to the fax.

Recipient_name 50 Recipient's name

SQLMessage 1000 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique message ID for the sent message (a positive number) if the procedure
completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

 Usage Tips:

• HTML and XML files used for faxing can refer to other files such as images, cascading
style sheets, and so on as long as these files are accessible via the Intranet or Internet
from the computer running DB Mail Server. The composite document is rendered using all
referenced objects at the time the message is processed and converted to a single TIFF
image.

• When developing your fax procedures you can use Internet Explorer or other web browser
to preview and test the created documents. What you see in the browser Print Preview
mode is what you get in the fax. Faxing HTML and XML documents is virtually the same
as printing them to a printer. The only real difference is that instead of producing printed
hard copies DB Mail produces TIFF images and then automatically faxes them to the
destination fax number.

Example:

The following example demonstrates how to send electronic fax using DB Mail functions.

In this example we will dynamically create HTML report and then fax it.

BEGIN
 DECLARE ret_code INTEGER;
 DECLARE errors VARCHAR(1000);
 DECLARE report VARCHAR(4000);

 /* create dynamic HTML report */
 SET report = '<html><title>Test Report</title><body>' || chr(10) ||
 '<h2>Test Report</h2><hr>' || chr(10) ||
 '<table><tr>' || chr(10) ||

CHAPTER 10, Sending electronic faxes

 - 155 -

 '<th bgcolor=black>Col 1</th>' || chr(10) ||
 '<th bgcolor=black>Col 2</th></tr>' || chr(10) ||
 '<tr><td>Value A</td><td align=right>1</td></tr>' || chr(10) ||
 '<tr><td>Value B</td><td align=right>2</td></tr>' || chr(10) ||
 '</table></body></html>';

 CALL dbmail.CreateMailFile('/maildir/report.htm', report,
 0, errors, ret_code);

 /* send report by fax */
 CALL dbmail.SendFax('+1 (123) 222-3344',
 'Test fax subject', '/maildir/report.htm'
 'Generic', 'Test recipient',
 errors, ret_code);

 /* delete temporary report file */
 CALL dbmail.DeleteMailFile('/maildir/report.htm', errors, ret_code);

END

SendFaxEx
Use this method to fax documents directly from your database or from external database-connected
applications. SendFaxEx is an extended version of SendFax procedure. Simply put SendFaxEx
supports more options then SendFax function. The definition of SendFaxEx procedure is shown below:

Definition

db_mail.SendFaxEx(
 fax VARCHAR(50),
 subject VARCHAR(255),
 file_name VARCHAR(255),
 cover_page_name VARCHAR(255),
 recipient_name VARCHAR(50),
 recipient_co VARCHAR(50),
 recipient_phone VARCHAR(50),
 cover_page_message VARCHAR(1000),
 sender_name VARCHAR(50),
 sender_co VARCHAR(50),
 sender_dept VARCHAR(50),
 sender_phone VARCHAR(50),
 sender_fax VARCHAR(50),
 notify_on_success INT,
 notify_on_failure INT,
 notify_email VARCHAR(100),
 priority INT,
 OUT SQLMessage VARCHAR(1000),
 OUT result INT)
RETURN NUMBER

Argument Max Size;
Value Range

Description

Fax 50 Recipient's fax number. Specify the number exactly as you would dial it
from your phone number including any dial out numbers, long distance
codes, local area codes and so on. Digits in the number can be
separated by optional dashes, parenthesis, spaces and other non-digit

CHAPTER 10, Sending electronic faxes

 - 156 -

symbols. For example, 1 (212) 555-6789

Subject 255 Message subject. If Cover_page_name value is not NULL and the cover
page features the RE field, the subject text is used for that field. See
sample cover page in Creating and modifying cover pages section for
details.

File_Name 255 Name of the file to fax. The name must conform to standard file naming
conventions and may include file path.

Cover_page_
name

255 Cover page file name not including file path and file extension. . If NULL
value is passed for the Cover_page_name argument, no cover page is
attached to the fax.

Recipient_name 50 Recipient's name.

Recipient_co 50 Recipients' company name, specify NULL if not available.

Recipient_phone 50 Recipient phone number. The phone number can be specified in any
format and may also include phone extensions if any. For example (121)
555-3456 x123

Cover_page_
message

255 Free message text that will appear in the cover page message area.

Sender_name 50 Sender's name.

Sender_co 50 Sender's company name

Sender_dept 50 Sender's department, for example Sales.

Sender_phone 50 Sender's phone number. The phone number can be specified in any
format and may also include phone extensions if any. For example (121)
555-3456 x123

Sender_fax 50 Sender's fax number. The fax number can be specified in any format.

Notify_on_
success

0..1 Whether to notify message sender by email after fax transmission
completed successfully. If this value is 1, in case of a successful
transmission DB Mail will email notification to the email address specified
in Notify_Email argument.

Notify_on_
failure

0..1 Whether to notify message sender by email after fax transmission failed.
If this value is 1, in case of a failed transmission DB Mail will email
notification to the email address specified in Notify_Email argument.

Notify_Email 100 Email address of the person or email group that will receive email
notification in case Notify_on_success or Notify_on_failure value is 1.

SQLMessage 1000 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values:

Result returns unique message ID for the sent message (a positive number) if the procedure

CHAPTER 10, Sending electronic faxes

 - 157 -

completes successfully.

If an error occurs, Result returns a negative number. Use SQLMessage argument to obtain the error
description.

 Usage Tips:

• HTML and XML files used for faxing can refer to other files such as images, cascading
style sheets, and so on as long as these files are accessible via the Intranet or Internet
from the computer running DB Mail Server. The composite document is rendered using all
referenced objects at the time the message is processed and converted to a single TIFF
image.

• When developing your fax procedures you can use Internet Explorer or other web browser
to preview and test the created documents. What you see in the browser Print Preview
mode is what you get in the fax. Faxing HTML and XML documents is virtually the same
as printing them to a printer. The only real difference is that instead of producing printed
hard copies DB Mail produces TIFF images and then automatically faxes them to the
destination fax number.

Example:

In this example we will dynamically create invoices for all orders placed yesterday and then fax them to
customers.

BEGIN
 DECLARE ret_code INTEGER;
 DECLARE errors VARCHAR(1000);
 DECLARE invoice_hmtl VARCHAR(4000);
 DECLARE order_no_dup INTEGER;

 FOR each_record AS cursor1 CURSOR FOR
 SELECT order_no, order_date, po_num, cust_no,
 cust_name, ship_via, ship_date, order_amount,
 cust_fax, cust_phone, cust_company
 FROM orders
 WHERE order_date = CURRENT DATE – DAY(1)
 DO

 -- make invoice header
 SET invoice_hmtl =
 '<html><head>' ||
 '<title>Invoice #' || char(order_no) || '</title>' ||

 '<link rel=stylesheet href="http://www.company.com/style.css">' ||
 '</head>' ||
 '<body>' ||
 '<h2>Invoice #' || char(order_no) || '</h2><hr>' ||
 '<table>' ||
 '<tr><th class=inv_header>Order Date</th>' ||
 '<th class=inv_header>PO #</th>' ||
 '<th class=inv_header>Customer #</th>' ||
 '<th class=inv_header>Customer Name</th>' ||
 '<th class=inv_header>Ship Via</th>' ||
 '<th class=inv_header>Ship Date</th>' ||
 </tr>' ||
 '<tr><td class=inv_data>' || char(order_date) || '</td>' ||
 '<td class=inv_data>' || po_no || '</td>' ||
 '<td class=inv_data>' || char(cust_no) || '</td>' ||
 '<td class=inv_data>' || cust_name || '</td>' ||
 '<td class=inv_data>' || ship_via || '</td>' ||

CHAPTER 10, Sending electronic faxes

 - 158 -

 '<td class=inv_data>' || char(ship_date) || '</td>' ||
 </tr>' ||
 '</table>';

 CALL dbmail.CreateMailFile('invoice.htm', invoice_hmtl,
 0, errors, ret_code);

 -- now add invoice details
 SET invoice_hmtl =
 '<table>' ||
 '<tr><th class=inv_header>Line #</th>' ||
 '<th class=inv_header>Item Code</th>' ||
 '<th class=inv_header>Item Name</th>' ||
 '<th class=inv_header>Quantity</th>' ||
 '<th class=inv_header>Price</th>' ||
 </tr>';

 CALL dbmail.CreateMailFile('invoice.htm', invoice_hmtl,
 1, errors, ret_code);

 SET order_no_dup = order_no;

 FOR each_record AS cursor2 CURSOR FOR
 SELECT line_no, item, item_name, quantity, price
 FROM order_items
 WHERE order_no = order_no_dup
 DO
 SET invoice_hmtl =
 '<tr><td class=inv_data>' || char(line_no) || '</td>' ||
 '<td class=inv_data>' || item || '</td>' ||
 '<td class=inv_data>' || item_name || '</td>' ||
 '<td class=inv_data>' || char(quantity) || '</td>' ||
 '<td class=inv_data>' || char(price) || '</td>' ||
 </tr>';

 CALL dbmail.CreateMailFile('invoice.htm', invoice_hmtl,
 1, errors, ret_code);

 -- move to the next item
 END FOR;

 -- now add invoice total and save it as a file
 SET invoice_hmtl = '</table>' ||
 '<hr>' ||
 '<p class=totals><h3>TOTAL: ' || rec.order_amount || '</p>' ||
 '</body>' ||
 '</html>';

 CALL dbmail.CreateMailFile('invoice.htm', invoice_hmtl,
 1, errors, ret_code);

 -- fax invoice
 CALL dbmail.SendFaxEx(
 cust_fax,
 'Invoice #' || to_char(order_no),
 'invoice.htm',
 'InvoiceCoverPage',
 cust_name,
 cust_company,
 cust_phone,
 NULL,
 'This is your invoice. Call our sales department '||
 'at (111) 222-3344 if you have any questions ' ||

CHAPTER 10, Sending electronic faxes

 - 159 -

 'concerning this invoice',
 NULL,
 'My company',
 'Sales department',
 '(111) 222-3344', '(111) 222-3355',
 0, 1,
 'ar@company.com', 0,
 errors, ret_code);

 -- move to the next order and create/fax next invoice
 END FOR;
END

CHAPTER 11, Sending phone/voice messages

 - 160 -

CHAPTER 11, Sending phone/voice
messages

Overview

To make phone calls and send automated voice messages from database applications use the
dbmail.SendVoice method. This method can be used to send pre-recorded messages in standard
WAV file format, send dynamically synthesized voice messages using text-to-speech technology and
send messages that contain multiple parts including pre-recorded and dynamic segment. DB Mail
communicates to the VoMS server which actually makes the required phone calls, verifies message
format and files, assembles multiple message parts into a single message, performs call progress
monitoring, detects call answer and then "speaks" the resulting message.

Advanced options

VoMS server supports a number of options that can be used to customize voice message delivery. The
following options can be configured using VoMS Administrator Console:

• Modem selection and configuration

• Default computer voice for dynamically synthesized voice messages, including voice name,
rate and volume

• Call progress detection parameters, timeouts, number of retries.

• VoMS server security and users

• Other message queuing and processing options

For more information on VoMS software usage and configuration see VoMS manual.

For detailed descriptions of the dbmail.SendVoice method and usage examples specific to your
database system refer to the following topics in this chapter.

Creating pre-recorded sound messages and message
segments

Use standard Windows Sound Recorder utility or similar software to create pre-recorded messages and
save them as .WAV file. To record sounds you must have a microphone and sound card installed on
your computer.

A shortcut to the standard Windows Sound Recorder utility can be normally found in C:\Documents
and Settings\All Users\Start Menu\Programs\Accessories\Entertainment folder. The utility can be
also started using Run option in the Windows Start menu. The name of this program is sndrec32.exe.

CHAPTER 11, Sending phone/voice messages

 - 161 -

The following screenshot demonstrates the Sound Recorder utility graphical interface.

For detailed instruction on how to use this utility click Help/Contents menu available in the Sound
Recorder graphical interface. After you are done with the sound recording copy all created .WAV files
to the directory accessible from your database server. If your database server is running on a Unix or
other non-Windows system you can use FTP or other appropriate methods to copy WAV files.

The recorded WAV files can be then attached to voice messages using dbmail.AttachFile method just
like any other files can be attached to email message sent using dmail.SendMail method.

For detailed descriptions of how to send sound files and specify their position in multiple-part messages
see description of the dbmail.SendVoice method and usage examples specific to your database
system in the following topics in this chapter.

Creating dynamically synthesized voice messages and
message segments

VoMS software features built-in methods for dynamically synthesized voice messages using text-to-
speech technology provided with most Windows installations. DB Mail utilizes these methods when
converting regular text messages and multiple-part messages containing text segments to WAV
compatible sound files. On your part, you simply call dbmail.SendVoice method and specify text that
you want to the computer to speak to the message recipient using computer synthesized human voice.
DB Mail and VoMs software automatically take care of the rest. They automatically convert text
messages to sound files, dial specified phone numbers, analyze call recipient responses are speak
your messages in case if a successfully human voice or answering machine response is detected.

CHAPTER 11, Sending phone/voice messages

 - 162 -

Oracle

SEND_VOICE
Use this method to make phone calls and play sound messages directly from your database or from
external database-connected applications. The definition of the SEND_VOICE function is shown
below:

Definition

db_mail.send_voice(
 telephones VARCHAR2,
 message VARCHAR2,
 priority INTEGER DEFAULT 0,
 attachment_id NUMBER DEFAULT NULL)
RETURN NUMBER

Argument Max Size;
Value Range

Description

Telephones 4000 Recipient's phone numbers. Specify the number exactly as you would
dial it from your phone number including any dial out numbers, long
distance codes, local area codes and so on. Digits in the number can be
separated by optional dashes, parenthesis, spaces and other non-digit
symbols. For example, 1 (212) 555-6789

If you need to send the same message to multiple recipients, use comma
to separate multiple phone numbers.

Message 4000 Message description containing optional text you want the computer to
speak to the phone call recipient and also containing optional pre-
recorded sound files. Use the Attachment_ID argument to specify which
pre-recoded sound files or BLOB values contabning sound data you
want to use with the message. To specify message file position within
the message text use a pair of <wav>and </wav> tags. For example,

Say <wav>Hello.wav</wav> to my friend

This message text will instruct DB Mail to perform the following
processing steps:

1. Convert word "Say" and the trailing space character into a WAV
file using computer synthesized human voice.

2. Append pre-recorded hello.wav file to the WAV file created in
step 1.

3. Convert words "to my friend " and the leading space character
into a WAV file using computer synthesized human voice.

4. Append last WAV file created in step 3 to the file created in step
1 and updated in step 2.

Here is another example that uses 2 pre-recorded message segments
and text segment as a computer synthesized text-to-speech insertion.

<wav>appointment_reminder</wav> 10:00 AM

CHAPTER 11, Sending phone/voice messages

 - 163 -

<wav>call_to_cancel.wav</vaw>

This message text will instruct DB Mail to perform the following
processing steps:

1. Convert text "10:00 AM " including leading and trailing spaces
into a WAV file using computer synthesized human voice.

2. Concatenate appointment_reminder.wav file with the WAV
created in step 2 and then with call_to_cancel.wav file.

 Tip: If you need to send a message whose text is longer than the
maximum size of varchar data-type in your database you can use a
special attachment file with the name message and no extension. DB
Mail will use the contents of that file for the message text. The value of
the Message parameter will be ignored in that case. For more
information see Error! Not a valid bookmark self-reference. topic.

Priority (optional) 0..2 Message processing priority takes a value of 0, 1, or 2. Note that this
property is used in 2 different places. If Message Queuing in enabled in
DB Mail options, messages having higher priority numbers are
processed before messages having lower priority numbers. VoMS server
software maintains it is own message queue. Message priorities have
similar effect on the VoMS server message processing, messages
having higher priority numbers are processed before messages having
lower priority numbers.

Attachment_ID
(optional)

 ID of the record or group of records in the MAIL_ATTACH table
containing attachment data. Message attachment should be created
using DB_MAIL.ATTACH_FILE and DB_MAIL.ATTACH_DATA methods.

Attached files and data must be in the standard WAV file format.

Return values:

0 - Success.

1 - Timed out. This procedure can timeout either because it cannot get a lock on the pipe, or because
the pipe remains too full to be used.

3 - An interrupt occurred.

 Usage Tips:

• One message can have any number of text and sound segments with any positions within
the message.

• You may not use nested <wav>tags. Nested tags will lead to message processing errors.

• Spaces in the message text have special importance. They are translated into pauses
between words and message segments.

• To send a message containing only pre-recorded sound file use simple
<wav>filename.wav</wav> message text, where filename.wav should be replaced with the
actual file name.

CHAPTER 11, Sending phone/voice messages

 - 164 -

• When creating pre-recorded sound messages make sure to set sound volume in all files to
the same level.

Examples:

The following examples demonstrate how to make phone calls and send voice messages using DB
Mail functions.

Example 1 (SQL):

The following SELECT statement will call all people who have an appointment scheduled between 9:00
AM and 9:00 PM and remind them about appointment time. In this example we will dynamically
synthesize human voice to speak the entire message. This example also assumes that the
APPOITMENTS table contains the APP_TIME, DOCTOR_NAME, PATIENT_NAME, and PHONE
columns.

SELECT db_mail.send_voice(PHONE,
 'This is a reminder that ' || PATIENT_NAME ||
 ' has an appointment with doctor ' || DOCTOR_NAME ||
 ' today at ' || to_char(APP_TIME, 'HH:MI AP') ||
 ' If you are unable to come please call 800-123-4567 ' ||
 ' to cancel this appointment.')
FROM APPOITMENTS
WHERE APP_TIME BETWEEN trunc(sysdate) + 9/24 AND trunc(sysdate) + 21/24;

Example 2 (Oracle 8, 8i, 9i, and 10g; 1 message with 1 pre-recorded segment stored as an
external WAV file):

This is a more advanced PL/SQL example that demonstrates how to use DB_MAIL.SEND_VOICE and
DB_MAIL.ATTACH_FILE functions to send pre-recorded voice message. The pre-recorded segment is
stored as WAV file in the directory referenced by SOUND_FILES directory object.

DECLARE
 attach_id INTEGER;
 ret_code INTEGER;
BEGIN
 attach_id := db_mail.Attach_File(NULL, 'announce.wav', 'SOUND_FILES');

 ret_code := db_mail.Send_Voice('+1 (123) 456-7890',
 '<wav>announce.wav</wav>',
 0,
 attach_id);
END;

Example 3 (Oracle 8, 8i, 9i, and 10g; 1 message with 3 pre-recorded segments stored as external
WAV files):

This example demonstrates how to use DB_MAIL.SEND_VOICE and DB_MAIL.ATTACH_FILE
functions to send pre-recorded voice message. The message contains 3 pre-recorded segments which
are stored as WAV files in the directory referenced by SOUND_FILES directory object.

DECLARE
 attach_id INTEGER;
 ret_code INTEGER;

CHAPTER 11, Sending phone/voice messages

 - 165 -

BEGIN
 attach_id := db_mail.Attach_File(NULL, 'greeting.wav', 'SOUND_FILES');
 ret_code := db_mail.Attach_File(attach_id, 'announce.wav', 'SOUND_FILES');
 ret_code := db_mail.Attach_File(attach_id, 'bye.wav', 'SOUND_FILES');

 ret_code := db_mail.Send_Voice(('+1 (123) 456-7890',
 '<wav>greeting.wav</wav> <wav>announce.wav</wav> <wav>bye.wav</wav>',
 0,
 attach_id);
END;

Example 4 (Oracle 8, 8i, 9i, and 10g; 1 message with 1 pre-recorded segment as an internal
BLOB data):

This example demonstrates how to use DB_MAIL.SEND_VOICE and DB_MAIL.ATTACH_DATA
functions to send pre-recorded voice message. The pre-recorded segment is stored as WAV data in a
database table BLOB type column.

DECLARE
 attach_id INTEGER;
 ret_code INTEGER;
 wav_data BLOB;
BEGIN
 SELECT b_col
 INTO wav_data
 FROM lob_table
 WHERE key_value = 21;

 attach_id := db_mail.Attach_Data(NULL, 1, 'greeting.wav', wav_data);

 ret_code := db_mail.Send_Voice('+1 (123) 456-7890',
 'Attention! <wav>greeting.wav</wav> Bye!',
 0,
 attach_id);
END;

Example 5 (Oracle 8, 8i, 9i, and 10g; 1 message with 3 pre-recorded segments as an internal
BLOB data):

This example demonstrates how to use DB_MAIL.SEND_VOICE and DB_MAIL.ATTACH_DATA
functions to send pre-recorded voice message. The message consists of 3 pre-recorded segments
which are stored as WAV data in a database table BLOB type column.

DECLARE
 attach_id INTEGER;
 ret_code INTEGER;
 wav_data BLOB;
BEGIN
 SELECT b_col
 INTO wav_data
 FROM lob_table
 WHERE file_name = 'greeting.wav';

 attach_id := db_mail.Attach_Data(NULL, 1, 'greeting.wav', wav_data);

 SELECT b_col
 INTO wav_data
 FROM lob_table

CHAPTER 11, Sending phone/voice messages

 - 166 -

 WHERE file_name = 'announce.wav';

 ret_code := db_mail.Attach_Data(attach_id, 2, 'announce.wav', wav_data);

 SELECT b_col
 INTO wav_data
 FROM lob_table
 WHERE file_name = 'bye.gif';

 ret_code := db_mail.Attach_Data(attach_id, 3, 'bye.wav', wav_data);

 ret_code := db_mail.Send_Voice('+1 (123) 456-7890',
 '<wav>greeting.wav</wav> <wav>announce.wav</wav> <wav>bye.wav</wav>',
 0,
 attach_id);
END;

Example 6 (Oracle 8i, 9i and 10g; many messages sharing the same voice segment stored as an
external WAV file):

This example demonstrates how to use DB_MAIL.SEND_VOICE and DB_MAIL.ATTACH_FILE
functions to send pre-recorded voice message. The pre-recorded segment is stored as WAV file in the
directory referenced by SOUND_FILES directory object.

SELECT db_mail.send_voice(PATIENT_PHONE,
 '<wav>reminder.wav</wav>'
 0,
 db_mail.Attach_File(NULL, 'reminder.wav', 'SOUND_FILES')) ;
FROM APPOITMENTS
WHERE APP_TIME BETWEEN trunc(sysdate) + 9/24 AND trunc(sysdate) + 21/24;

Example 7 (Oracle 8i, 9i and 10g, many messages sharing 2 voice segments stored as external
WAV files):

This example demonstrates how to use DB_MAIL.SEND_VOICE and DB_MAIL.ATTACH_FILE
functions to send pre-recorded voice message. The example message contains 2 pre-recorded
segments stored as WAV files in the directory referenced by SOUND_FILES directory object.

SELECT db_mail.send_voice(PATIENT_PHONE,
 '<wav>reminder.wav</wav>'
 0,
 db_mail.Attach_File(Attach_File(NULL,
 'hello.wav', 'SOUND_FILES'),
 'reminder.wav', 'SOUND_FILES')) ;
FROM APPOITMENTS
WHERE APP_TIME BETWEEN trunc(sysdate) + 9/24 AND trunc(sysdate) + 21/24;

Microsoft SQL Server

SendVoice
Use this method to make phone calls and play sound messages directly from your database or from

CHAPTER 11, Sending phone/voice messages

 - 167 -

external database-connected applications. The definition of the SEND_VOICE function is shown
below:

Definition

dbmail.SendVoice(
 @telephones VARCHAR(8000),
 @message VARCHAR(8000),
 @priority INT = 0,
 @attachment_id INT = NULL)

Argument Max Size;
Value Range

Description

Telephones 8000 Recipient's phone numbers. Specify the number exactly as you would
dial it from your phone number including any dial out numbers, long
distance codes, local area codes and so on. Digits in the number can be
separated by optional dashes, parenthesis, spaces and other non-digit
symbols. For example, 1 (212) 555-6789

If you need to send the same message to multiple recipients, use comma
to separate multiple phone numbers.

Message 8000 Message description containing optional text you want the computer to
speak to the phone call recipient and also containing optional pre-
recorded sound files. Use the Attachment_ID argument to specify which
pre-recoded sound files or BLOB values contabning sound data you
want to use with the message. To specify message file position within
the message text use a pair of <wav>and </wav> tags. For example,

Say <wav>Hello.wav</wav> to my friend

This message text will instruct DB Mail to perform the following
processing steps:

1. Convert word "Say" and the trailing space character into a WAV
file using computer synthesized human voice.

2. Append pre-recorded hello.wav file to the WAV file created in
step 1.

3. Convert words "to my friend " and the leading space character
into a WAV file using computer synthesized human voice.

4. Append last WAV file created in step 3 to the file created in step
1 and updated in step 2.

Here is another example that uses 2 pre-recorded message segments
and text segment as a computer synthesized text-to-speech insertion.

<wav>appointment_reminder</wav> 10:00 AM
<wav>call_to_cancel.wav</vaw>

This message text will instruct DB Mail to perform the following
processing steps:

1. Convert text "10:00 AM " including leading and trailing spaces
into a WAV file using computer synthesized human voice.

2. Concatenate appointment_reminder.wav file with the WAV
created in step 2 and then with call_to_cancel.wav file.

 Tip: If you need to send a message whose text is longer than the
maximum size of varchar data-type in your database you can use a
special attachment file with the name message and no extension. DB
Mail will use the contents of that file for the message text. The value of

CHAPTER 11, Sending phone/voice messages

 - 168 -

the Message parameter will be ignored in that case. For more
information see Error! Not a valid bookmark self-reference. topic.

Priority (optional) 0..2 Message processing priority takes a value of 0, 1, or 2. Note that this
property is used in 2 different places. If Message Queuing in enabled in
DB Mail options, messages having higher priority numbers are
processed before messages having lower priority numbers. VoMS server
software maintains it is own message queue. Message priorities have
similar effect on the VoMS server message processing, messages
having higher priority numbers are processed before messages having
lower priority numbers.

Attachment_ID
(optional)

 ID of the record or group of records in the MAIL_ATTACH table
containing attachment data. Message attachment should be created
using dbmail.AttachFile and dbmail.AttachData methods.

Attached files and data must be in the standard WAV file format.

Return values: Returns unique message ID or returns -1 if an error occurs.

 Usage Tips:

• One message can have any number of text and sound segments with any positions within
the message.

• You may not use nested <wav>tags. Nested tags will lead to message processing errors.

• Spaces in the message text have special importance. They are translated into pauses
between words and message segments.

• To send a message containing only pre-recorded sound file use simple
<wav>filename.wav</wav> message text, where filename.wav should be replaced with the
actual file name.

• When creating pre-recorded sound messages make sure to set sound volume in all files to
the same level.

• Use the @@ERROR global variable to check for errors. @@ERROR is set to 0 if the
procedure executed successfully. If an error occurs, a non-zero number is returned.
@@ERROR returns the number of the error message until another Transact-SQL
statement is executed. You can view the text associated with an @@ERROR error
number in the SYSMESSAGES system table.

Examples

The following examples demonstrate how to make phone calls and send voice messages using DB
Mail procedures.

Example 1 (Sending simple dynamically synthesized message to 1 recipient):

The following EXECUTE statement will send "Password expiring" reminder message to telephone
number +1 (123) 345-6789. In this example we will dynamically synthesize human voice to speak the
entire message.

EXEC master.dbmail.SendVoice '+1 (123) 345-6789',

CHAPTER 11, Sending phone/voice messages

 - 169 -

 'Attention batch job owners, your database password will
 expire in 3 days. Be sure to update your batch jobs before
 that date. If you need assistance, reply to this message
 with your questions'

Example 2 (Sending dynamically synthesized messages to multiple recipients):

In this example we create user defined scalar function callable from various SQL statement just like
other built-in system functions. Using this function we will send email to all users who run batch jobs
and whose database passwords are going to expire next Monday. In this example we will dynamically
synthesize human voice to speak the entire message. This example also assumes that the
BATCH_USER table contains the EXPIRE_DATE and FNAME columns, which represent the expiry
date of the password, the email user id and the full user name.

-- First, let's create a user-defined scalar Transact-SQL function that
-- we can call from SELECT statements
CREATE FUNCTION mySendVoice(@telephone VARCHAR(30),
 @message VARCHAR(8000))
RETURNS INT
AS
BEGIN
 DECLARE @ret INT
 EXEC @ret = master.dbmail.SendVoice @ telephone, @message
 RETURN (@ret)
END
go

-- Now, we can call our own send voice function
SELECT mySendVoice(userid + '@domain.com',
 'Dear ' + fname + ',' + char(10) + char(10) +
 'Your database password will expire next Monday. ' +
 'Be sure to update your batch jobs before that date.' + char(10) +
 'If you need assistance, call our help desk (800) 555-6677')
FROM batch_user
WHERE expire_date =
 DateAdd(DAY, 3, convert(datetime, convert(varchar, GetDate(), 101)))

go

Example 3 (Sending dynamically synthesized message from a T-SQL procedure):

This is a more advanced T-SQL example of a similar use of the dbmail.SendVoice procedure:

/***
* This procedure debits the specified account by specified amount
* only if there are sufficient funds to cover the withdrawal, and if there
* are not, it sends an automated phone call to the account holder
* notifying about insufficient funds problem.
* This function returns new account balance.
***/
CREATE PROCEDURE sp_acct_debit (@acct_nbr CHAR(10), @debit_amt MONEY)
AS
BEGIN
 DECLARE
 @acct_balance MONEY,
 @ret_code INTEGER
 SET @ret_code = -1

 SELECT @acct_balance = balance
 FROM accounts

CHAPTER 11, Sending phone/voice messages

 - 170 -

 WHERE acct = @acct_nbr

 IF @acct_balance >= @debit_amt
 BEGIN
 SET @acct_balance = @acct_balance - @debit_amt
 UPDATE accounts
 SET balance = @acct_balance
 WHERE acct = @acct_nbr

 IF @@error = 0 SET @ret_code = 1 -- success
 END
 ELSE
 -- Insufficient funds.
 -- Send asynchronous voice notification to the account holder
 DECLARE @phone VARCHAR(50),
 @message VARCHAR(200)

 SELECT @phone = phone,
 @message = 'Best Bank could not complete your last ' +
 'debit transaction for account number ending with ' +
 substr(@acct_nbr, 7, 4) + ' because there are ' +
 ' insufficient funds available in your account.'
 FROM accounts
 WHERE acct = @acct_nbr

 EXEC @rec_code = master.dbmail.SendVoice @phone, @message

 SET @ret_code = 0
 END

 RETURN (@ret_code) -- return code 1 indicates success
 -- 0 indicates insufficient funds
 -- -1 indicates all other problems
END

go

Example 4 (Sending 1 message to 1 recipient using pre-recorded sound message stored as
external file):

DECLARE @attach_id INTEGER

EXEC @attach_id = master.dbmail.AttachFile NULL, 'c:\announcment\new.wav'

EXEC master.dbmail.SendVoice '+1 (123) 345-6789',
 '<wav>new.wav</wav>',
 0,
 @attach_id

Example 5 (Sending multiple-part message containing 1 dynamically synthesized segment and
2 pre-recorded sound segments stored as external files):

DECLARE @attach_id INTEGER

EXEC @attach_id = master.dbmail.AttachFile NULL, 'c:\misc\dear.wav'
EXEC master.dbmail.AttachFile @attach_id, 'c:\campains\donate.wav'

EXEC master.dbmail.SendVoice '+1 (123) 345-6789',
 '<wav>dear.wav</wav> John ' <wav>donate.wav</wav>',
 0,

CHAPTER 11, Sending phone/voice messages

 - 171 -

 @attach_id

Example 6 (Sending 1 message to 1 recipient using pre-recorded sound message stored as
internal BLOB in an image data-type column):

DECLARE @attach_id INTEGER
DECLARE @data_length INT
DECLARE @ptrval BINARY(16)

-- read blob value from a table
SELECT @data_length = DATALENGTH(blob_column),
 @ptrval = TEXTPTR(blob_column)
FROM sound_table
WHERE sound_id = 21

READTEXT sound_table.blob_column @ptrval 1 @data_length

-- pass that value to the AttachData procedure
EXECUTE @attach_id = master.dbmail.AttachData NULL, 'product.gif', @ptrval

-- now, dial out and speak the message
EXEC master.dbmail.SendVoice '+1 (123) 345-6789',
 '<wav>new.wav</wav>',
 0,
 @attach_id

Example 7 (Sending 1 message to multiple recipients using 2 pre-recorded sound segments
stored as internal BLOB values in an image data-type column and 1 dynamically synthesized
segment whose text is based on a table data):

-- First, let's create a user-defined scalar Transact-SQL function that
-- we can call from SELECT statements
CREATE FUNCTION mySendVoice(@phone VARCHAR(30),
 @variable_part VARCHAR(255))
RETURNS INT
AS
BEGIN
 DECLARE @attach_id INTEGER
 DECLARE @data_length INT
 DECLARE @ptrval BINARY(16)

 -- read first blob value from a table
 SELECT @data_length = DATALENGTH(blob_column),
 @ptrval = TEXTPTR(blob_column)
 FROM sound_table
 WHERE sound_id = 1

 READTEXT sound_table.blob_column @ptrval 1 @data_length
 -- pass that value to the AttachData procedure
 EXEC @attach_id = master.dbmail.AttachData NULL, 'new.wav', @ptrval

 -- read second blob value from a table
 SELECT @data_length = DATALENGTH(blob_column),
 @ptrval = TEXTPTR(blob_column)
 FROM sound_table
 WHERE sound_id = 2

 READTEXT sound_table.blob_column @ptrval 1 @data_length
 -- pass that value to the AttachData procedure
 EXEC master.dbmail.AttachData @attach_id, 'announce.wav', @ptrval

CHAPTER 11, Sending phone/voice messages

 - 172 -

 -- now, dial out and speak the entire message
 EXEC @ret = EXEC master.dbmail.SendVoice @phone,
 '<wav>new.wav</wav> ' + @variable_part + '<wav>announce.wav</wav>',
 0,
 @attach_id

 RETURN (@ret)
END
go

-- Now, we can call our own send voice function

SELECT mySendVoice(customer_phone,
 'Dear ' + customer_title + ' ' + customer_name)
FROM customer
WHERE customer_phone IS NOT NULL
 AND status = 'A';
go

Sybase SQL Server, ASE, ASA

SendVoice
Use this method to make phone calls and play sound messages directly from your database or from
external database-connected applications. The definition of the SEND_VOICE function is shown below:

Definition

dbmail.SendVoice(
 @telephones VARCHAR(255),
 @message VARCHAR(255),
 @priority INT = 0,
 @attachment_id INT = NULL,
 OUT SQLMessage VARCHAR(255),
 OUT result INT)

Argument Max Size;
Value Range

Description

Telephones 255 Recipient's phone numbers. Specify the number exactly as you would
dial it from your phone number including any dial out numbers, long
distance codes, local area codes and so on. Digits in the number can be
separated by optional dashes, parenthesis, spaces and other non-digit
symbols. For example, 1 (212) 555-6789

If you need to send the same message to multiple recipients, use comma
to separate multiple phone numbers.

Message 255 Message description containing optional text you want the computer to
speak to the phone call recipient and also containing optional pre-
recorded sound files. Use the Attachment_ID argument to specify which
pre-recoded sound files or BLOB values contabning sound data you
want to use with the message. To specify message file position within
the message text use a pair of <wav>and </wav> tags. For example,

CHAPTER 11, Sending phone/voice messages

 - 173 -

Say <wav>Hello.wav</wav> to my friend

This message text will instruct DB Mail to perform the following
processing steps:

1. Convert word "Say" and the trailing space character into a WAV
file using computer synthesized human voice.

2. Append pre-recorded hello.wav file to the WAV file created in
step 1.

3. Convert words "to my friend " and the leading space character
into a WAV file using computer synthesized human voice.

4. Append last WAV file created in step 3 to the file created in step
1 and updated in step 2.

Here is another example that uses 2 pre-recorded message segments
and text segment as a computer synthesized text-to-speech insertion.

<wav>appointment_reminder</wav> 10:00 AM
<wav>call_to_cancel.wav</vaw>

This message text will instruct DB Mail to perform the following
processing steps:

1. Convert text "10:00 AM " including leading and trailing spaces
into a WAV file using computer synthesized human voice.

2. Concatenate appointment_reminder.wav file with the WAV
created in step 2 and then with call_to_cancel.wav file.

 Tip: If you need to send a message whose text is longer than the
maximum size of varchar data-type in your database you can use a
special attachment file with the name message and no extension. DB
Mail will use the contents of that file for the message text. The value of
the Message parameter will be ignored in that case. For more
information see Error! Not a valid bookmark self-reference. topic.

Priority (optional) 0..2 Message processing priority takes a value of 0, 1, or 2. Note that this
property is used in 2 different places. If Message Queuing in enabled in
DB Mail options, messages having higher priority numbers are
processed before messages having lower priority numbers. VoMS server
software maintains it is own message queue. Message priorities have
similar effect on the VoMS server message processing, messages
having higher priority numbers are processed before messages having
lower priority numbers.

Attachment_ID
(optional)

 ID of the record or group of records in the MAIL_ATTACH table
containing attachment data. Message attachment should be created
using dbmail.AttachFile and dbmail.AttachData methods.

Attached files and data must be in the standard WAV file format.

SQLMessage 255 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values: Returns unique message ID or returns -1 if an error occurs.

 Usage Tips:

• One message can have any number of text and sound segments with any positions within

CHAPTER 11, Sending phone/voice messages

 - 174 -

the message.

• You may not use nested <wav>tags. Nested tags will lead to message processing errors.

• Spaces in the message text have special importance. They are translated into pauses
between words and message segments.

• To send a message containing only pre-recorded sound file use simple
<wav>filename.wav</wav> message text, where filename.wav should be replaced with the
actual file name.

• When creating pre-recorded sound messages make sure to set sound volume in all files to
the same level.

• Use the @@ERROR global variable to check for errors. @@ERROR is set to 0 if the
procedure executed successfully. If an error occurs, a non-zero number is returned.
@@ERROR returns the number of the error message until another Transact-SQL
statement is executed. You can view the text associated with an @@ERROR error
number in the SYSMESSAGES system table.

Examples

The following examples demonstrate how to make phone calls and send voice messages using DB
Mail procedures.

Example 1 (Sending simple dynamically synthesized message to 1 recipient):

The following EXECUTE statement will send "Password expiring" reminder message to telephone
number +1 (123) 345-6789. In this example we will dynamically synthesize human voice to speak the
entire message.

DECLARE @Ret INT, @ErrMessage VARCHAR(255)

EXEC sybsystemprocs.dbmail.SendVoice '+1 (123) 345-6789',
 'Attention batch job owners, your database password will
 expire in 3 days. Be sure to update your batch jobs before
 that date. If you need assistance, reply to this message
 with your questions', @ErrMessage, @Ret

Example 2 (Sending dynamically synthesized message from a T-SQL procedure):

This is a more advanced T-SQL example of a similar use of the dbmail.SendVoice procedure:

/***
* This procedure debits the specified account by specified amount
* only if there are sufficient funds to cover the withdrawal, and if there
* are not, it sends an automated phone call to the account holder
* notifying about insufficient funds problem.
* This function returns new account balance.
***/
CREATE PROCEDURE sp_acct_debit (@acct_nbr CHAR(10), @debit_amt MONEY)
AS
BEGIN
 DECLARE
 @acct_balance MONEY,
 @ret_code INTEGER,

CHAPTER 11, Sending phone/voice messages

 - 175 -

 DECLARE
 @Ret INT,
 @ErrMessage VARCHAR(255)

 SET @ret_code = -1

 SELECT @acct_balance = balance
 FROM accounts
 WHERE acct = @acct_nbr

 IF @acct_balance >= @debit_amt
 BEGIN
 SET @acct_balance = @acct_balance - @debit_amt
 UPDATE accounts
 SET balance = @acct_balance
 WHERE acct = @acct_nbr

 IF @@error = 0 SET @ret_code = 1 -- success
 END
 ELSE
 -- Insufficient funds.
 -- Send asynchronous voice notification to the account holder
 DECLARE @phone VARCHAR(50),
 @message VARCHAR(200)

 SELECT @phone = phone,
 @message = 'Best Bank could not complete your last ' +
 'debit transaction for account number ending with ' +
 substr(@acct_nbr, 7, 4) + ' because there are ' +
 ' insufficient funds available in your account.'
 FROM accounts
 WHERE acct = @acct_nbr

 EXEC @rec_code = sybsystemprocs.dbmail.SendVoice @phone, @message,
 @ErrMessage, @Ret
 SET @ret_code = 0
 END

 RETURN (@ret_code) -- return code 1 indicates success
 -- 0 indicates insufficient funds
 -- -1 indicates all other problems
END

go

Example 3 (Sending 1 message to 1 recipient using pre-recorded sound message stored as
external file):

DECLARE @attach_id INTEGER
DECLARE @Ret INT, @ErrMessage VARCHAR(255)

EXEC @attach_id = sybsystemprocs.dbmail.AttachFile NULL,
 'c:\announcment\new.wav',
 @ErrMessage, @Err

EXEC sybsystemprocs.dbmail.SendVoice '+1 (123) 345-6789',
 '<wav>new.wav</wav>', 0, @attach_id, @ErrMessage, @Err

CHAPTER 11, Sending phone/voice messages

 - 176 -

Example 4 (Sending 1 message to 1 recipient using pre-recorded sound message stored as
internal BLOB in an image data-type column):

DECLARE @attach_id INTEGER
DECLARE @ptrval BINARY(16)
DECLARE @Ret INT, @ErrMessage VARCHAR(255)

-- read blob value from a table
SELECT @ptrval = TEXTPTR(sound_col)
FROM sound_table
WHERE sound_id = 21

-- pass that value to the AttachData procedure
EXECUTE @attach_id = sybsystemprocs.dbmail.AttachData NULL,
 'announce.wav', @ptrval,
 @ErrMessage, @Err

-- now, dial out and speak the message
EXEC sybsystemprocs.dbmail.SendVoice '+1 (123) 345-6789',
 '<wav>announce.wav</wav>', 0, @attach_id, @ErrMessage, @Err

Example 5 (Sending multiple-part message containing 1 dynamically synthesized segment and
2 pre-recorded sound segments stored as external files):

DECLARE @attach_id INTEGER
DECLARE @Ret INT, @ErrMessage VARCHAR(255)

EXEC @attach_id = sybsystemprocs.dbmail.AttachFile NULL, 'c:\misc\dear.wav',
 @ErrMessage, @Err
EXEC sybsystemprocs.dbmail.AttachFile @attach_id, 'c:\campains\donate.wav',
 @ErrMessage, @Err

EXEC sybsystemprocs.dbmail.SendVoice '+1 (123) 345-6789',
 '<wav>dear.wav</wav> John ' <wav>donate.wav</wav>',
 0, @attach_id, @ErrMessage , @Ret

IBM DB2

SendVoice
Use this method to make phone calls and play sound messages directly from your database or from
external database-connected applications. The definition of the SEND_VOICE function is shown below:

Definition

dbmail.SendVoice(
 telephones VARCHAR(32672),
 message VARCHAR(32672),
 priority INT,
 attachment_id INT,
 OUT SQLMessage VARCHAR(1000),
 OUT result INT)

CHAPTER 11, Sending phone/voice messages

 - 177 -

Argument Max Size;
Value Range

Description

Telephones 32672 Recipient's phone numbers. Specify the number exactly as you would
dial it from your phone number including any dial out numbers, long
distance codes, local area codes and so on. Digits in the number can be
separated by optional dashes, parenthesis, spaces and other non-digit
symbols. For example, 1 (212) 555-6789

If you need to send the same message to multiple recipients, use comma
to separate multiple phone numbers.

Message 32672 Message description containing optional text you want the computer to
speak to the phone call recipient and also containing optional pre-
recorded sound files. Use the Attachment_ID argument to specify which
pre-recoded sound files or BLOB values contabning sound data you
want to use with the message. To specify message file position within
the message text use a pair of <wav>and </wav> tags. For example,

Say <wav>Hello.wav</wav> to my friend

This message text will instruct DB Mail to perform the following
processing steps:

1. Convert word "Say" and the trailing space character into a WAV
file using computer synthesized human voice.

2. Append pre-recorded hello.wav file to the WAV file created in
step 1.

3. Convert words "to my friend " and the leading space character
into a WAV file using computer synthesized human voice.

4. Append last WAV file created in step 3 to the file created in step
1 and updated in step 2.

Here is another example that uses 2 pre-recorded message segments
and text segment as a computer synthesized text-to-speech insertion.

<wav>appointment_reminder</wav> 10:00 AM
<wav>call_to_cancel.wav</vaw>

This message text will instruct DB Mail to perform the following
processing steps:

1. Convert text "10:00 AM " including leading and trailing spaces
into a WAV file using computer synthesized human voice.

2. Concatenate appointment_reminder.wav file with the WAV
created in step 2 and then with call_to_cancel.wav file.

 Tip: If you need to send a message whose text is longer than the
maximum size of varchar data-type in your database you can use a
special attachment file with the name message and no extension. DB
Mail will use the contents of that file for the message text. The value of
the Message parameter will be ignored in that case. For more
information see Error! Not a valid bookmark self-reference. topic.

Priority (optional) 0..2 Message processing priority takes a value of 0, 1, or 2. Note that this
property is used in 2 different places. If Message Queuing in enabled in
DB Mail options, messages having higher priority numbers are
processed before messages having lower priority numbers. VoMS server
software maintains it is own message queue. Message priorities have
similar effect on the VoMS server message processing, messages
having higher priority numbers are processed before messages having

CHAPTER 11, Sending phone/voice messages

 - 178 -

lower priority numbers.

Attachment_ID
(optional)

 ID of the record or group of records in the MAIL_ATTACH table
containing attachment data. Message attachment should be created
using dbmail.AttachFile and dbmail.AttachData methods.

Attached files and data must be in the standard WAV file format.

SQLMessage 1000 Output variable used to return error description in case an error occurs

Result Output variable to return procedure result

Return values: Returns unique message ID or returns -1 if an error occurs.

 Usage Tips:

• One message can have any number of text and sound segments with any positions within
the message.

• You may not use nested <wav>tags. Nested tags will lead to message processing errors.

• Spaces in the message text have special importance. They are translated into pauses
between words and message segments.

• To send a message containing only pre-recorded sound file use simple
<wav>filename.wav</wav> message text, where filename.wav should be replaced with the
actual file name.

• When creating pre-recorded sound messages make sure to set sound volume in all files to
the same level.

Examples

The following examples demonstrate how to make phone calls and send voice messages using DB
Mail procedures.

Example 1 (DB2 SQL; Sending simple dynamically synthesized message to 1 recipient):

The following CALL statement will send "Password expiring" reminder message to telephone number
+1 (123) 345-6789. In this example we will dynamically synthesize human voice to speak the entire
message.

DECLARE Ret INT;
DECLARE ErrMessage VARCHAR(1000);

CALL dbmail.SendVoice('+1 (123) 345-6789',
 'Attention batch job owners, your database password will
 expire in 3 days. Be sure to update your batch jobs before
 that date. If you need assistance, reply to this message
 with your questions', ErrMessage, Ret);

Example 2 (DB2 SQL, Sending dynamically synthesized message from a T-SQL procedure):

This is a more advanced SQL example of a similar use of the dbmail.SendVoice procedure:

CHAPTER 11, Sending phone/voice messages

 - 179 -

/***
* This procedure debits the specified account by specified amount
* only if there are sufficient funds to cover the withdrawal, and if there
* are not, it sends an automated phone call to the account holder
* notifying about insufficient funds problem.
* This function returns new account balance.
***/
CREATE PROCEDURE sp_acct_debit (acct_nbr CHAR(10), debit_amt DECIMAL(11,2))
LANGUAGE SQL
BEGIN
 DECLARE acct_balance DECIMAL(11,2);
 DECLARE ret_code INTEGER;
 DECLARE phone VARCHAR(50);
 DECLARE message VARCHAR(200);
 DECLARE errors VARCHAR(1000);

 SET ret_code = -1;

 SELECT balance
 INTO acct_balance
 FROM accounts
 WHERE acct = acct_nbr;

 IF acct_balance >= debit_amt THEN
 SET acct_balance = acct_balance - debit_amt;

 UPDATE accounts
 SET balance = acct_balance
 WHERE acct = acct_nbr;

 IF @@error = 0 THEN SET @ret_code = 1; END IF; -- success
 ELSE
 -- Insufficient funds.
 -- Send asynchronous voice notification to the account holder
 SELECT phone,
 'Best Bank could not complete your last ' ||
 'debit transaction for account number ending with ' ||
 substr(acct_nbr, 7, 4) + ' because there are ' ||
 'insufficient funds available in your account.'
 INTO phone, message
 FROM accounts
 WHERE acct = acct_nbr;

 CALL dbmail.SendVoice(phone, message, 0, errors, ret_code);

 SET ret_code = 0;
 END;

 RETURN ret_code; -- return code 1 indicates success
 -- 0 indicates insufficient funds and
 -- successful notice
 -- -1 indicates all other problems
END

Example 3 (DB2 SQL; Sending 1 message to 1 recipient using pre-recorded sound message
stored as external file):

DECLARE attach_id INT;
DECLARE Ret INT;
DECLARE ErrMessage VARCHAR(255);

CALL dbmail.AttachFile(NULL, '/files/sound/announcement.wav',

CHAPTER 11, Sending phone/voice messages

 - 180 -

 errors, attach_id);

CALL dbmail.SendVoice('+1 (123) 345-6789',
 '<wav>announcement.wav</wav>', 0, attach_id, ErrMessage, Ret)

Example 4 (DB2 SQL; Sending 1 message to 1 recipient using pre-recorded sound message
stored as internal BLOB in a BLOB data-type column):

DECLARE attach_id INTEGER;
DECLARE errors VARCHAR(1000);
DECLARE ret_code INTEGER;
DECLARE data BLOB(1M);

-- read blob value from a table
SELECT wav_data INTO data
FROM sound_files
WHERE doc_type = 'ANNOUNCEMENT' AND doc_key = 1;

-- pass that value to the AttachData procedure
CALL dbmail.AttachData(NULL, 'announce.wav', data,
 errors, attach_id);

-- now, dial out and speak the message
CALL dbmail.SendVoice('+1 (123) 345-6789', '<wav>announce.wav</wav>', 0,
 attach_id, errors, ret_code);
END

Example 5 (Sending multiple-part message containing 1 dynamically synthesized segment and
2 pre-recorded sound segments stored as external files):

DECLARE attach_id INTEGER
DECLARE errors VARCHAR(1000);
DECLARE ret INTEGER;

CALL dbmail.AttachFile(NULL, 'c:\misc\dear.wav', errors, attach_id);
CALL dbmail.AttachFile(attach_id, 'c:\campains\donate.wav', errors, ret);

CALL dbmail.SendVoice('+1 (123) 345-6789',
 '<wav>dear.wav</wav> John ' <wav>donate.wav</wav>',
 0, attach_id, errors, ret);

CHAPTER 12, Helpful Tips and Recommendations

 - 181 -

CHAPTER 12, Helpful Tips and
Recommendations

Performance Tips

Use the following helpful performance tips when sending messages. These tips can greatly improve DB
Mail efficiency.

• Do not send large html reports and other large pieces of information within the body of an email
message. Instead send them as email attachments.

• If you need to send the same message to multiple recipients, it is more efficient to create just one
message and specify multiple recipients as a comma-separated list in the Recipients parameter.
DB Mail will automatically distribute such message to each listed recipient.

• Email recipient names can include email group names. If you use Microsoft Exchange Server as
your email server make sure listed group names are created as email distribution lists. A
distribution list may be used for the purpose of sending a single email message to a group of
people. This is the most basic and the most common use for lists. Moreover, the Exchange Server
can understand a distribution list, which is made up of other distribution lists. For instance,
assuming a separate list for each department on campus, a master list can be made up of all
those department lists gathered together, eliminating the need to add every faculty/staff member
explicitly to the master list.

• If you need to send a message whose text is longer than the maximum size of the varchar data-
type allowed in your database you can use a special text attachment with the name MESSAGE
and no extension. DB Mail will use text of this attachment in place of the message text. The value
of the Message parameter is ignored and superseded by the text of the attachment.

 Important note:
When sending email messages with multiple attachments including the special MESSAGE
attachment, make sure the MESSAGE attachment is specified as the last one. Failure to specify
MESSAGE as the last attachment in the attachment list will lead to incorrect messages.

Usage Tips

• If you want recipients of email message to see their name in the message SENT TO property
specify their email address as

name@domain.com<Recipient Name>

• You can design your own fax cover pages using the Fax Cover Page Editor utility available on all
Windows 2000 and Windows XP computers. For information on how to create new or modify an
existing cover page see Creating and modifying cover pages topic.

• Fax cover pages are normally stored in the following folder:

• C:\Documents and Settings\All Users\Start

CHAPTER 12, Helpful Tips and Recommendations

 - 182 -

Menu\Programs\Accessories\Communications\Fax\My Faxes\Common Coverpages

• Users who want to receive network popup messages and system alerts must be running the
Messenger service on their Windows computers.

Database portability tips

DB Mail is designed to provide unified messaging methods in all supported database systems.
However, the names of DB Mail methods in Oracle databases differ from names of DB Mail methods in
other database management systems. Here is the explanation of why this is done and how to unify DB
Mail messaging methods across Oracle and non-Oracle databases.

The DB Mail Oracle implementation conforms to Oracle naming conventions for system built-in
packages. Because of this, the names of DB_MAIL package functions in Oracle slightly differ from
names of DB Mail functions used in other database management systems. If you are planning to use
DB Mail with applications supporting multiple database systems you can create a "proxy" package in
Oracle whose only purpose is to provide unified naming across Oracle and non-Oracle databases.
Each function of such package will internally call the functionally-matching function in the DB_MAIL
package passing through all function parameters.

For example if you are planning to use dbmail.SendMail method you can create a new DBMAIL
Oracle package as in the following example:

/* create DBMAIL package description */
CREATE OR REPLACE PACKAGE system.dbmail IS

 FUNCTION SendMail(
 recipients VARCHAR2,
 subject VARCHAR2,
 message VARCHAR2,
 reply_to VARCHAR2 DEFAULT NULL,
 content_type VARCHAR2 DEFAULT 'text/plain',
 priority INTEGER DEFAULT 1,
 attachment_id NUMBER DEFAULT NULL)
 RETURN NUMBER;

 FUNCTION AttachFile(
 aid NUMBER,
 afile_name VARCHAR2,
 adir VARCHAR2)
 RETURN NUMBER;

 FUNCTION AttachData(
 aid NUMBER,
 afile_name VARCHAR2,
 adata BLOB)
 RETURN NUMBER;
END dbmail;
/

show errors

/* create DBMAIL package body */
CREATE OR REPLACE PACKAGE BODY system.dbmail IS
 FUNCTION SendMail(

CHAPTER 12, Helpful Tips and Recommendations

 - 183 -

 recipients VARCHAR2,
 subject VARCHAR2,
 message VARCHAR2,
 reply_to VARCHAR2 DEFAULT NULL,
 content_type VARCHAR2 DEFAULT 'text/plain',
 priority INTEGER DEFAULT 1,
 attachment_id NUMBER DEFAULT NULL)
 RETURN NUMBER
 IS
 BEGIN
 RETURN db_mail.SendMail(recipients,
 subject,
 message,
 reply_to,
 content_type,
 priority,
 attachment_id);
 END SendMail;

 FUNCTION AttachFile(
 aid NUMBER,
 afile_id NUMBER,
 afile_name VARCHAR2,
 adir VARCHAR2)
 RETURN NUMBER
 IS
 BEGIN
 RETURN db_mail.attach_file(aid,
 afile_name,
 adir);
 END AttachFile;

 FUNCTION AttachData(
 aid NUMBER,
 afile_name VARCHAR2,
 adata BLOB)
 RETURN NUMBER
 IS
 BEGIN
 RETURN db_mail.attach_data(aid,
 afile_name,
 adata);
 END AttachData;

END dbmail;
/

show errors

/* Create public synonym */
CREATE PUBLIC SYNONYM dbmail FOR system.dbmail
/

CHAPTER 13, Troubleshooting and Maintenance

 - 184 -

CHAPTER 13, Troubleshooting and
Maintenance

Basic Troubleshooting

You can perform some basic troubleshooting by checking the various directories and files. For example,
setting the Diagnostic level in the DB Mail Options screen and then checking the DB_MAIL.LOG
DB_MAIL.ERR files in the ‘\Program Files\DB Mail 2’ directory. Usually, you should be able to figure out if a
syntax or semantic mistake has been made. Check the APPENDIX C, Hardware and Software
Requirements for further details.

Troubleshooting message processing
To effectively troubleshoot message processing anomalies, set the Diagnostic level in the DB Mail Options
screen to Development. Reproduce the situation in which you believe messages are not processed
correctly and then check the DB_MAIL.LOG file for errors and workings. For more information on
supported logging levels and their differences see Logging level topic.

Troubleshooting database operations

To troubleshoot database operations you can run DB Mail in a special debug mode. To enter this mode
start DB Mail from the command line as

DB_MAIL /DEBUG

A trace window will be displayed for every DB Mail database daemon process and for the DB Mail console.
In addition all tracing information will be written to LOG files located in DB Mail home directory.

Also see Troubleshooting the database connection topic for more information on how to troubleshoot
database connections and database operations.

Known Issues

• If fax processing creates a heavy load on the system, the Microsoft Fax Server can
periodically hang. As a workaround for this problem you can schedule periodic restart of the
server using the following method:

1. Create a new batch file RESTART_FAX_SERVER.BAT containing command to stop/start
Fax Server:

NET STOP "Fax Server"
NET START "Fax Server"

2. Schedule this file using Windows Control Panel's Add Scheduled Task applet to run every
night or day. To add this task from a DOS command prompt use the AT command. For
example,

CHAPTER 13, Troubleshooting and Maintenance

 - 185 -

AT /EVERY:m,t,w,th,f,s,su 22:00 "C:\RESTART_FAX_SERVER.BAT"

which would run it every day each week at 10:00 PM.

For more information on how to schedule a task in Windows please see Microsoft
Knowledge Base article KB300160.

http://support.microsoft.com/default.aspx?scid=kb;en-us;300160

APPENDIX A, Starting DB Mail on Computer Startup

 - 186 -

APPENDIX A, Starting DB Mail on Computer
Startup

To start DB Mail each time Windows starts:

1. Click the Windows Start button, and then point to the Settings.

2. Click Taskbar, and then click the Start Menu Programs tab.

3. Click Add, and then click Browse.

4. Locate DB_MAIL.EXE in the DB Mail installation directory, then double-click it.

5. Click Next, and then double-click the StartUp folder.

6. Type the name DB Mail, which you will to see on the StartUp menu, and then click Finish.
Windows will create a shortcut that will be placed to the SratUp folder.

7. Repeat steps 1 and 2. Click Advanced, and then locate the newly created shortcut.

8. Right-click on the shortcut, and then click Properties

9. For the startup window property select Minimized, and then click OK

 Tips:
When DB Mail will start, it will appear as an icon in the Windows System Tray.

To show the DB Mail Server Console, double-click on the icon or right-click then select Show
command from the pop-up menu.

If you are running DB Mail on Windows NT or Windows 2000 computer you can also install DB Mail
Service. To find out more about it see APPENDIX B, Running DB Mail as a Windows NT service.

APPENDIX B, Running DB Mail as a Windows NT service

 - 187 -

APPENDIX B, Running DB Mail as a
Windows NT service

DB Mail can be optionally set to run as a Windows NT service. There are several important Windows
NT service features that you should know and carefully consider before setting the DB Mail to run as a
service:

The DB Mail service can start automatically whenever the computer is started or user is logged to the
network and runs continuously in the background.

Use DB_MAIL.LOG file to check the service status and activity. This file is located in the same folder
as the DB Mail programs – by default it is located in the ‘\Program Files\DB Mail 2’ folder.

Tip:
The DB Mail service is not installed and configured automatically on installation. For installing and
configuring the DB Mail service use Install/Uninstall DB Mail Windows NT Service
shortcuts in the DB Mail program group.

By default the service is installed under LocalSystem account. You should use Control Panel/Services
applet to change the DB Mail service account to some other administrative account that has sufficient
privileges to access the network and connect to the database. Failure to select the correct account will
result in DB Mail being unable to connect to your database servers. This limitation is due to
Windows NT design, for security purposes. Services running under LocalSystem are started
before the system is logged to the network and so they do not have network access.

For more information on Windows NT services, see your Windows NT documentation. You may also
want to visit Microsoft technical support on the Web. The following Microsoft knowledge base articles
will be useful:

Q124184 - Service Running as System Account Fails Accessing Network.

Q132679 - Local System Account and Null Sessions in Windows NT.

Q158825 - System and User Account Difference

APPENDIX C, Hardware and Software Requirements

 - 188 -

APPENDIX C, Hardware and Software
Requirements

DB Mail requires the following minimum hardware and software configurations:

Minimum Hardware Requirements

Front-end:

1. Intel-based or compatible computer
2. At least 64 MB RAM
3. 12 MB disk space
4. Class II fax-modem or better (if fax processing is required on the local computer)
5. VGA monitor

Recommended Configuration

1. Pentium class CPU 400 MHz or better
2. 128 MB RAM or better
3. 18 MB disk space
4. SVGA 256-color or better monitor

Minimum Software Requirements

Back-end:

Any of the supported database servers:
• Oracle 7.3, 8.0, 8i, 9i, 10g
• Microsoft SQL Server 6.5, 7, 2000, 2005
• Sybase SQL Server and Sybase Adaptive Server Enterprise 10.x, 11.x, 12.x
• Sybase Adaptive Server Anywhere 6, 7, 8, 9
• IBM DB2 UDB 5.x, 6.x, 7.x, 8.x

 Note: Target Database(s) need not be present in the same system as DB Mail.

Front-end:

1. Windows server or workstation running one of the following operating system:
• Windows 2003 (server or workstation)
• Windows XP (server or workstation)
• Windows 2000 (server or workstation)
• Windows NT 4.0 (server or workstation with SP4 or better)

2. Required database client software (consult your database system documentation for details)

3. ODBC and ODBC driver (optional; needed if ODBC connection is used)

4. MAPI interface, or Winsock for use with SMTP or Lotus Notes client (installed by default)

5. Fax Printer driver for Fax processing

6. Microsoft Internet Explorer 5.0 or better (required for fax processing)

APPENDIX C, Hardware and Software Requirements

 - 189 -

 Portability:

Oracle: Oracle database software is ported to work under different operating systems and is the same
on all systems. DB Mail can work with any Oracle database (version 7.3 and later) running on any
operating system.

IBM DB2: DB2 database software is ported to work under different operating systems. Most DB2
features required by DB Mail are available in DB2 UDB version 6.1 and later on all systems. Therefore,
DB Mail can work with any DB2 database version 6.1 and later running on any Windows, Linux or UNIX
system.

Sybase SQL Server and ASE: Sybase SQL Server database software is ported to work under
different operating systems. All Sybase SQL Server database features required by DB Mail are
available in version 10.0 and later on all systems. Therefore, DB Mail can work with any Sybase
database version 10.0 and later running on any operating system.

Sybase ASA: Sybase Adaptive Server Anywhere database software is ported to work under different
operating systems. All Sybase ASA database features required by DB Mail are available in version 6.0
and later on all systems. Therefore, DB Mail can work with any Sybase ASA database version 6.0 and
later running on any operating system.

Microsoft SQL Server and MSDE: Microsoft SQL Server database software is ported to work under
different versions of Windows operating system. All Microsoft SQL Server database features required
by DB Mail are available in version 7.0 and later on all systems. Therefore, DB Mail can work with any
SQL Server database version 7.0 and later running on any operating system.

APPENDIX D, Technical Support

 - 190 -

APPENDIX D, Technical Support

Your questions, comments, and suggestions are welcome.

For technical support email to support@softtreetech.com or use the on-line support form at
http://www.softtreetech.com/Support.htm.

Please use the Technical Support Request Form show below when contacting us by email or fax.

When reporting problems, please provide as much information as possible about your problem. Be sure to
include the following information:

1 Is the problem reproducible? If so, how?

2 What version of Windows are you running? For example, Windows XP, Windows NT 4.0, etc.

3 What versions of the DB Mail and databases are you running?

4 If a dialog box with an error message was displayed, please include the full text of the dialog box,
including the text in the title bar.

5 If the problem involves an external program, provide as much information as possible on this
program?

Also, make sure to include the serial number for your copy of the DB Mail. Use Help/About menu to look
up the correct numbers. Registered users have priority support.

For registration information, purchasing or other sales information, please contact our sales department
sales@softtreetech.com .

For general information, software updates, the latest information on known problems, and answers to
frequently asked questions visit the DB Mail home page on the Web: http://www.softtreetech.com/dbmail/.

We’re happy to help in any way we can, but if you’re having problems please check the troubleshooting
section first to see if your question is answered there.

mailto:support@softtreetech.com
mailto:sales@softtreetech.com
http://www.softtreetech.com/dbmail/

APPENDIX D, Technical Support

 - 191 -

Technical Support Request Form
FAX TO: +1 212-208-4625

EMAIL TO: support@softtreetech.com

Please include the following contact information:
Name__

Company___

Address___

City, State/Zip___

Phone__Fax__________________________________

Email___

Best time to reach you__

Database system information: Server version_____ Server platform____________________
SQL*Net version_____ DB-Lib version_____ CT-Lib version_____
ODBC driver vendor________________ version_____

Which operating system are you using: MS Windows 9x____ MS Windows NT/2000/XP____

Email system Information: MAPI______ SMTP______ Lotus Notes______

Fax server software version_____

Computer brand and CPU
type:___

RAM (MB):____________________________ Speed (Mhz):_______________________________

CPU quantity and type: ___

Video driver:___

Relevant devices or
peripherals:__

Description of the problem:

What steps have you taken in order to solve the problem:

APPENDIX E, Licensing

 - 192 -

APPENDIX E, Licensing

DB MAIL SOFTWARE LICENSE

The SOFTWARE PRODUCT is protected by copyright laws and international copyright treaties, as well
as other intellectual property laws and treaties. The SOFTWARE PRODUCT is licensed, not sold.

CAUTION: Loading this software onto a computer indicates your acceptance of the following terms.
Please read them carefully.

GRANT OF LICENSE: SoftTree Technologies, Inc. ("SoftTree Technologies") grants you a license to
use the software ("Software"). One licensed copy of the Software may be used for as many database
connections as many connections you have licensed.

You may make other copies of the Software for backup and archival purposes only. You may
permanently transfer all of your rights under this Software LICENSE only in conjunction with a
permanent transfer of your validly licensed copy of the product(s).

LICENSE TYPES: The Software and associated add-in components are licensed on a RUN-TIME
basis, which means, that for each computer on which the Software is installed, a valid run-time license
must exist.

Single Database Server License
This license type permits using the Software on a single computer (a stand-alone computer or a single
workstation in a network or a single network server) per license with one database server. The
database server can be running on the same or other computer.

Site License
This license type permits installation and execution of the Software on multiple computers within a
single physical location (i.e. an office or data center location at a single physical address). It also
permits using the software with any number of database servers.

Enterprise License
This license type permits installation and execution of the Software on multiple computers in multiple
locations throughout the licensed company's facilities.

RESTRICTIONS: Unregistered versions (shareware licensed copies) of the Software may be used for
a period of not more than 30 days. After 30 days, you must either stop using the Software, or purchase
a validly licensed copy.

You must maintain all copyright notices on all copies of the Software. You may not sell copies of the
Software to third parties without express written consent of SoftTree Technologies and under SoftTree
Technologies' instruction.

EVALUATION copies may be distributed freely without charge so long as the Software remains whole
including but not limited to existing copyright notices, installation and setup utilities, help files, licensing
agreement, In executing such an act as distributing without the similar copyright or license violation, to
the maximum extent permitted by applicable law you may be held liable for loss of revenue to SoftTree
Technologies or SoftTree Technologies' representatives due to loss of sales or devaluation of the
Software or both.

You must comply with all applicable laws regarding the use of the Software.

COPYRIGHT: The Software is the proprietary product of SoftTree Technologies and is protected by
copyright law. You acquire only the right to use the Software and do not acquire any rights of

APPENDIX E, Licensing

 - 193 -

ownership.

For your convenience, SoftTree Technologies provides certain Software components in the source
code format. You may customize this code for your environment, but you agree not to publish, transfer,
or redistribute in any other form both the original code and the modified code.

You agree not to remove any product identification, copyright notices, or other notices or proprietary
restrictions from the Software.

You agree not to cause or permit the reverse engineering, disassembly, or decompilation of the
Software. You shall not disclose the results of any benchmark tests of the Software to any third party
without SoftTree Technologies' prior written approval.

DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS: You may not rent, lease or transfer the
Software except as outlined under GRANT OF LICENSE - use and copy.

Without prejudice to any other rights, SoftTree Technologies may terminate this Software LICENSE if
you fail to comply with the terms and conditions of this Software LICENSE. In such event, you must
destroy all copies of the Software and all of its component parts.

WARRANTY DISCLAIMER: SoftTree Technologies is providing this license on an "as is" basis without
warranty of any kind; SoftTree Technologies disclaims all express and implied warranties, including the
implied warranties of merchantability or fitness for a particular purpose.

LIMITATION OF LIABILITY: SoftTree Technologies shall not be liable for any damages, including
direct, indirect, incidental, special or consequential damages, or damages for loss of profits, revenue,
data or data use, incurred by you or any third party, whether in an action in contract or tort, even if you
or any other person has been advised of the possibility of such damages.

SoftTree Technologies, Inc.
Ilyce Ct 62,
Staten Island NY, 10306
USA

Copyright (c) SoftTree Technologies, Inc. 2000-2005 All Rights Reserved

VOMS SOFTWARE LICENSE

The SOFTWARE PRODUCT is protected by copyright laws and international copyright treaties, as well
as other intellectual property laws and treaties. The SOFTWARE PRODUCT is licensed, not sold.

CAUTION: Loading this software onto a computer indicates your acceptance of the following terms.
Please read them carefully.

GRANT OF LICENSE: SoftTree Technologies, Inc. ("SoftTree Technologies") grants you a limited
license to use the software ("Software"). One licensed copy of the Software may be used together with
each DB MAIL software license for the purposes of providing voice messaging interface to the DB Mail
server software only. It may not be used with other software or as standalone server software.

You may make other copies of the Software for backup and archival purposes only. You may

APPENDIX E, Licensing

 - 194 -

permanently transfer all of your rights under this Software LICENSE only in conjunction with a
permanent transfer of your validly licensed copy of the product(s).

LICENSE TYPES: The Software and associated add-in components are licensed on a RUN-TIME
basis, which means, that for each computer on which the Software is installed, a valid run-time license
must exist.

Single DB Mail License
This license type permits using the Software on a single computer (a stand-alone computer or a single
workstation in a network or a single network server) per license with one DB Mail server. The DB Mail
server can be running on the same or other computer.

Site License
This license type permits installation and execution of the Software on multiple computers within a
single physical location (i.e. an office or data center location at a single physical address). It also
permits using the software with any number of DB Mail servers.

Enterprise License
This license type permits installation and execution of the Software on multiple computers in multiple
locations throughout the licensed company's facilities.

RESTRICTIONS: Unregistered versions (shareware licensed copies) of the Software may be used for
a period of not more than 30 days. After 30 days, you must either stop using the Software, or purchase
a validly licensed copy.

You must maintain all copyright notices on all copies of the Software. You may not sell copies of the
Software to third parties without express written consent of SoftTree Technologies and under SoftTree
Technologies' instruction.

EVALUATION copies may be distributed freely without charge so long as the Software remains whole
including but not limited to existing copyright notices, installation and setup utilities, help files, licensing
agreement, In executing such an act as distributing without the similar copyright or license violation, to
the maximum extent permitted by applicable law you may be held liable for loss of revenue to SoftTree
Technologies or SoftTree Technologies' representatives due to loss of sales or devaluation of the
Software or both.

You must comply with all applicable laws regarding the use of the Software.

COPYRIGHT: The Software is the proprietary product of SoftTree Technologies and is protected by
copyright law. You acquire only the right to use the Software and do not acquire any rights of
ownership.

For your convenience, SoftTree Technologies provides certain Software components in the source
code format. You may customize this code for your environment, but you agree not to publish, transfer,
or redistribute in any other form both the original code and the modified code.

You agree not to remove any product identification, copyright notices, or other notices or proprietary
restrictions from the Software.

You agree not to cause or permit the reverse engineering, disassembly, or decompilation of the
Software. You shall not disclose the results of any benchmark tests of the Software to any third party
without SoftTree Technologies' prior written approval.

DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS: You may not rent, lease or transfer the
Software except as outlined under GRANT OF LICENSE - use and copy.

Without prejudice to any other rights, SoftTree Technologies may terminate this Software LICENSE if
you fail to comply with the terms and conditions of this Software LICENSE. In such event, you must
destroy all copies of the Software and all of its component parts.

WARRANTY DISCLAIMER: SoftTree Technologies is providing this license on an "as is" basis without

APPENDIX E, Licensing

 - 195 -

warranty of any kind; SoftTree Technologies disclaims all express and implied warranties, including the
implied warranties of merchantability or fitness for a particular purpose.

LIMITATION OF LIABILITY: SoftTree Technologies shall not be liable for any damages, including
direct, indirect, incidental, special or consequential damages, or damages for loss of profits, revenue,
data or data use, incurred by you or any third party, whether in an action in contract or tort, even if you
or any other person has been advised of the possibility of such damages.

SoftTree Technologies, Inc.
Ilyce Ct 62,
Staten Island NY, 10306
USA

Copyright (c) SoftTree Technologies, Inc. 2005 All Rights Reserved

	Table of Contents
	About this guide
	Intended audience
	Conventions used in this document
	Abbreviations and product reference terms
	Trademarks

	Introduction
	CHAPTER 1, How DB Mail works
	Implementation
	Message processing workflow
	Database applications
	Database server
	Local message queue
	Database daemons
	Central message queue
	Message processors
	Email server
	Page server
	Fax server
	Voice server
	Direct network messages

	Sample Scenarios
	On-line order processing application
	Supply chain warehouse application
	Database administrative applications
	Appointment-reminder application

	Supported messaging methods and protocols.
	Emailing - sending electronic mail
	Paging - sending numeric and text messages to pagers and cel
	Network messaging - sending interruptible network popup mess
	System alerts - sending interruptible network alerts
	Faxing - sending electronic faxes (paperless)
	Voice Messaging - making phone calls and sending voice messa

	Supported database systems and options
	Database Connectivity Requirements
	Messaging features by DBMS

	Frequently Asked Questions (FAQ)

	CHAPTER 2, Connecting To Your Database
	Connection methods and requirements
	Preparing to use your database
	Installing the ODBC driver or native database driver
	Defining the ODBC data source
	Troubleshooting the database connection
	Database Profiles

	CHAPTER 3, DB Mail database interfaces
	Oracle
	Microsoft SQL Server
	Sybase SQL Server, ASE, ASA
	Advanced version interface
	Limited version interface

	IBM DB2
	Advanced version interface
	Limited version interface

	CHAPTER 4, Installation and Uninstallation
	Front-end Installation
	DB Mail Server installation
	VoMS installation

	Back-end Installation
	Requirements
	Oracle
	Microsoft SQL Server
	Sybase SQL Server, ASE, ASA
	IBM DB2
	How to copy files (SQL Server example)
	How to FTP files (DB2 example)
	Managing user access to DB Mail features

	Testing
	Uninstallation

	CHAPTER 5, Configuring DB Mail
	Configuring Databases Options
	Configuring Email Options
	Configuring New MAPI Profile
	Configuring SMS and Pager Options
	Configuring Network Popups and Alerts Options
	Configuring Fax Options
	Configuring Voice Messaging Options
	Configuring Queue Options
	Configuring Error-Handling Options
	Configuring Self-Healing and Maintenance Options
	Configuring Archiving Options
	Configuring User-Access and Security

	CHAPTER 6, Sending email messages
	Overview
	Oracle
	SEND_MAIL
	ATTACH_FILE
	ATTACH_DATA
	CREATE_MAIL_FILE
	DELETE_MAIL_FILE

	Microsoft SQL Server
	SendMail
	AttachFile
	AttachData
	CreateMailFile
	DeleteMailFile

	Sybase SQL Server, ASE, ASA
	SendMail
	AttachFile
	AttachData
	CreateMailFile
	DeleteMailFile

	IBM DB2
	SendMail
	AttachFile
	AttachData
	CreateMailFile
	DeleteMailFile

	CHAPTER 7, Sending SMS/pager messages
	Overview
	Oracle
	SEND_PAGE

	Microsoft SQL Server
	SendPage

	Sybase SQL Server, ASE, ASA
	SendPage

	IBM DB2
	SendPage

	CHAPTER 8, Sending network popup messages
	Overview
	Oracle
	SEND_POPUP_MESSAGE

	Microsoft SQL Server
	SendPopupMessage

	Sybase SQL Server, ASE, ASA
	SendPopupMessage

	IBM DB2
	SendPopupMessage

	CHAPTER 9, Sending system alerts
	Overview
	Oracle
	SEND_ALERT

	Microsoft SQL Server
	SendAlert

	Sybase SQL Server, ASE, ASA
	SendAlert

	IBM DB2
	SendAlert

	CHAPTER 10, Sending electronic faxes
	Overview
	Creating and modifying cover pages
	Oracle
	SEND_FAX
	SEND_FAX_EX

	Microsoft SQL Server
	SendFax
	SendFaxEx

	Sybase SQL Server, ASE, ASA
	SendFax
	SendFaxEx

	IBM DB2
	SendFax
	SendFaxEx

	CHAPTER 11, Sending phone/voice messages
	Overview
	Creating pre-recorded sound messages and message segments
	Creating dynamically synthesized voice messages and message
	Oracle
	SEND_VOICE

	Microsoft SQL Server
	SendVoice

	Sybase SQL Server, ASE, ASA
	SendVoice

	IBM DB2
	SendVoice

	CHAPTER 12, Helpful Tips and Recommendations
	Performance Tips
	Usage Tips
	Database portability tips

	CHAPTER 13, Troubleshooting and Maintenance
	Basic Troubleshooting
	Troubleshooting message processing
	Troubleshooting database operations
	Known Issues

	APPENDIX A, Starting DB Mail on Computer Startup
	APPENDIX B, Running DB Mail as a Windows NT service
	APPENDIX C, Hardware and Software Requirements
	APPENDIX D, Technical Support
	APPENDIX E, Licensing
	DB MAIL SOFTWARE LICENSE
	VOMS SOFTWARE LICENSE

